表单的树状关联(转载虾皮)

4、单表关联

    前面的实例都是在数据上进行一些简单的处理,为进一步的操作打基础。"单表关联"这个实例要求给出的数据寻找关心的数据,它是对原始数据所包含信息的挖掘。下面进入这个实例。

4.1 实例描述

    实例中给出child-parent(孩子——父母)表,要求输出grandchild-grandparent(孙子——爷奶)表。

    样例输入如下所示。

    file:

 

child        parent

Tom        Lucy

Tom        Jack

Jone        Lucy

Jone        Jack

Lucy        Mary

Lucy        Ben

Jack        Alice

Jack        Jesse

Terry        Alice

Terry        Jesse

Philip        Terry

Philip        Alma

Mark        Terry

Mark        Alma

 

    家族树状关系谱:

 

 image

图4.2-1 家族谱

    样例输出如下所示。

    file:

 

grandchild        grandparent

Tom              Alice

Tom              Jesse

Jone              Alice

Jone              Jesse

Tom              Mary

Tom              Ben

Jone              Mary

Jone              Ben

Philip              Alice

Philip              Jesse

Mark              Alice

Mark              Jesse

 

4.2 设计思路

       分析这个实例,显然需要进行单表连接,连接的是左表parent列和右表child列,且左表右表同一个表

  连接结果除去连接的两列就是所需要的结果——"grandchild--grandparent"表。要用MapReduce解决这个实例,首先应该考虑如何实现自连接其次就是连接列设置最后结果整理

      考虑到MapReduce的shuffle过程会将相同的key会连接在一起,所以可以将map结果的key设置成待连接,然后列中相同的值就自然会连接在一起了。再与最开始的分析联系起来:

  要连接的是左表的parent列和右表的child列,且左表和右表是同一个表,所以在map阶段读入数据分割childparent之后,会将parent设置成keychild设置成value进行输出,并作为左表再将同一对childparent中的child设置成keyparent设置成value进行输出,作为右表。为了区分输出中的左右表,需要在输出的value加上左右表信息,比如在value的String最开始处加上字符1表示左表,加上字符2表示右表。这样在map的结果中就形成了左表和右表,然后在shuffle过程中完成连接。reduce接收到连接的结果,其中每个key的value-list就包含了"grandchild--grandparent"关系。取出每个key的value-list进行解析,将左表中的child放入一个数组右表中的parent放入一个数组,然后对两个数组求笛卡尔积就是最后的结果了。

4.3 程序代码

    程序代码如下所示。

 

package com.hebut.mr;

 

import java.io.IOException;

import java.util.*;

 

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.GenericOptionsParser;

 

public class STjoin {

 

    public static int time = 0;

 

    /*

     * map将输出分割childparent,然后正序输出一次作为右表,

     * 反序输出一次作为左表,需要注意的是在输出的value中必须

     * 加上左右表的区别标识。

     */

    public static class Map extends Mapper<Object, Text, Text, Text> {

 

        // 实现map函数

        public void map(Object key, Text value, Context context)

                throws IOException, InterruptedException {

            String childname = new String();// 孩子名称

            String parentname = new String();// 父母名称

            String relationtype = new String();// 左右表标识

 

            // 输入的一行预处理文本

            StringTokenizer itr=new StringTokenizer(value.toString());

            String[] values=new String[2];

            int i=0;

            while(itr.hasMoreTokens()){

                values[i]=itr.nextToken();

                i++;

            }

           

            if (values[0].compareTo("child") != 0) {

                childname = values[0];

                parentname = values[1];

 

                // 输出左表

                relationtype = "1";

                context.write(new Text(values[1]), newText(relationtype +

                        "+"+ childname + "+" + parentname));

 

                // 输出右表

                relationtype = "2";

                context.write(new Text(values[0]), newText(relationtype +

                        "+"+ childname + "+" + parentname));

            }

        }

 

    }

 

    public static class Reduce extends Reducer<Text, Text, Text, Text> {

 

        // 实现reduce函数

        public void reduce(Text key, Iterable<Text> values, Context context)

                throws IOException, InterruptedException {

 

            // 输出表头

            if (0 == time) {

                context.write(new Text("grandchild"), new Text("grandparent"));

                time++;

            }

 

            int grandchildnum = 0;

            String[] grandchild = new String[10];

            int grandparentnum = 0;

            String[] grandparent = new String[10];

 

            Iterator ite = values.iterator();

            while (ite.hasNext()) {

                String record = ite.next().toString();

                int len = record.length();

                int i = 2;

                if (0 == len) {

                    continue;

                }

 

                // 取得左右表标识

                char relationtype = record.charAt(0);

                // 定义孩子和父母变量

                String childname = new String();

                String parentname = new String();

 

                // 获取value-listvaluechild

                while (record.charAt(i) != '+') {

                    childname += record.charAt(i);

                    i++;

                }

 

                i = i + 1;

 

                // 获取value-listvalueparent

                while (i < len) {

                    parentname += record.charAt(i);

                    i++;

                }

 

                // 左表,取出child放入grandchildren

                if ('1' == relationtype) {

                    grandchild[grandchildnum] = childname;

                    grandchildnum++;

                }

 

                // 右表,取出parent放入grandparent

                if ('2' == relationtype) {

                    grandparent[grandparentnum] = parentname;

                    grandparentnum++;

                }

            }

 

            // grandchildgrandparent数组求笛卡尔儿积

            if (0 != grandchildnum && 0 != grandparentnum) {

                for (int m = 0; m < grandchildnum; m++) {

                    for (int n = 0; n < grandparentnum; n++) {

                        // 输出结果

                        context.write(new Text(grandchild[m]), newText(grandparent[n]));

                    }

                }

            }

        }

    }

 

    public static void main(String[] args) throws Exception {

        Configuration conf = new Configuration();

        // 这句话很关键

        conf.set("mapred.job.tracker", "192.168.1.2:9001");

 

        String[] ioArgs = new String[] { "STjoin_in", "STjoin_out" };

        String[] otherArgs = new GenericOptionsParser(conf, ioArgs).getRemainingArgs();

        if (otherArgs.length != 2) {

            System.err.println("Usage: Single Table Join <in> <out>");

            System.exit(2);

        }

 

        Job job = new Job(conf, "Single Table Join");

        job.setJarByClass(STjoin.class);

 

        // 设置MapReduce处理类

        job.setMapperClass(Map.class);

        job.setReducerClass(Reduce.class);

 

        // 设置输出类型

        job.setOutputKeyClass(Text.class);

        job.setOutputValueClass(Text.class);

 

        // 设置输入和输出目录

        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

        System.exit(job.waitForCompletion(true) ? 0 : 1);

    }

}

 

4.4 代码结果

1)准备测试数据

    通过Eclipse下面的"DFS Locations"在"/user/hadoop"目录下创建输入文件"STjoin_in"文件夹(备注:"STjoin_out"不需要创建。)如图4.4-1所示,已经成功创建。

 

                  

图4.4-1 创建"STjoin_in"                                       图4.4.2 上传"child-parent"表

 

    然后在本地建立一个txt文件,通过Eclipse上传到"/user/hadoop/STjoin_in"文件夹中,一个txt文件的内容如"实例描述"那个文件一样。如图4.4-2所示,成功上传之后。

    从SecureCRT远处查看"Master.Hadoop"的也能证实我们上传的文件,显示其内容如图4.4-3所示:

 

图4.4-3 表"child-parent"内容

    2)运行详解

    (1)Map处理:

    map函数输出结果如下所示。

 

child        parent                àà                    忽略此行

Tom        Lucy                   àà                <Lucy,1+Tom+Lucy>

                                                    <Tom,2+Tom+Lucy >

Tom        Jack                    àà                <Jack,1+Tom+Jack>

                                                    <Tom,2+Tom+Jack>

Jone        Lucy                 àà                <Lucy,1+Jone+Lucy>

                                                    <Jone,2+Jone+Lucy>

Jone        Jack                    àà                <Jack,1+Jone+Jack>

                                                    <Jone,2+Jone+Jack>

Lucy        Mary                   àà                <Mary,1+Lucy+Mary>

                                                    <Lucy,2+Lucy+Mary>

Lucy        Ben                    àà                <Ben,1+Lucy+Ben>

                                                     <Lucy,2+Lucy+Ben>

Jack        Alice                    àà                <Alice,1+Jack+Alice>

                                                      <Jack,2+Jack+Alice>

Jack        Jesse                   àà                <Jesse,1+Jack+Jesse>

                                                      <Jack,2+Jack+Jesse>

Terry        Alice                   àà                <Alice,1+Terry+Alice>

                                                      <Terry,2+Terry+Alice>

Terry        Jesse                  àà                <Jesse,1+Terry+Jesse>

                                                      <Terry,2+Terry+Jesse>

Philip        Terry                  àà                <Terry,1+Philip+Terry>

                                                      <Philip,2+Philip+Terry>

Philip        Alma                   àà                <Alma,1+Philip+Alma>

                                                      <Philip,2+Philip+Alma>

Mark        Terry                   àà                <Terry,1+Mark+Terry>

                                                      <Mark,2+Mark+Terry>

Mark        Alma                 àà                <Alma,1+Mark+Alma>

                                                      <Mark,2+Mark+Alma>

 

    (2)Shuffle处理

    在shuffle过程中完成连接。

 

map函数输出

排序结果

shuffle连接

<Lucy1+Tom+Lucy>

<Tom2+Tom+Lucy>

<Jack1+Tom+Jack>

<Tom2+Tom+Jack>

<Lucy1+Jone+Lucy>

<Jone2+Jone+Lucy>

<Jack1+Jone+Jack>

<Jone2+Jone+Jack>

<Mary1+Lucy+Mary>

<Lucy2+Lucy+Mary>

<Ben1+Lucy+Ben>

<Lucy2+Lucy+Ben>

<Alice1+Jack+Alice>

<Jack2+Jack+Alice>

<Jesse1+Jack+Jesse>

<Jack2+Jack+Jesse>

<Alice1+Terry+Alice>

<Terry2+Terry+Alice>

<Jesse1+Terry+Jesse>

<Terry2+Terry+Jesse>

<Terry1+Philip+Terry>

<Philip2+Philip+Terry>

<Alma1+Philip+Alma>

<Philip2+Philip+Alma>

<Terry1+Mark+Terry>

<Mark2+Mark+Terry>

<Alma1+Mark+Alma>

<Mark2+Mark+Alma>

<Alice1+Jack+Alice>

<Alice1+Terry+Alice>

<Alma1+Philip+Alma>

<Alma1+Mark+Alma>

<Ben1+Lucy+Ben>

<Jack1+Tom+Jack>

<Jack1+Jone+Jack>

<Jack2+Jack+Alice>

<Jack2+Jack+Jesse>

<Jesse1+Jack+Jesse>

<Jesse1+Terry+Jesse>

<Jone2+Jone+Lucy>

<Jone2+Jone+Jack>

<Lucy1+Tom+Lucy>

<Lucy1+Jone+Lucy>

<Lucy2+Lucy+Mary>

<Lucy2+Lucy+Ben>

<Mary1+Lucy+Mary>

<Mark2+Mark+Terry>

<Mark2+Mark+Alma>

<Philip2+Philip+Terry>

<Philip2+Philip+Alma>

<Terry2+Terry+Alice>

<Terry2+Terry+Jesse>

<Terry1+Philip+Terry>

<Terry1+Mark+Terry>

<Tom2+Tom+Lucy>

<Tom2+Tom+Jack>

<Alice1+Jack+Alice

        1+Terry+Alice 

        1+Philip+Alma

        1+Mark+Alma >

<Ben1+Lucy+Ben>

<Jack1+Tom+Jack

        1+Jone+Jack

        2+Jack+Alice

        2+Jack+Jesse >

<Jesse1+Jack+Jesse

        1+Terry+Jesse >

<Jone2+Jone+Lucy

        2+Jone+Jack>

<Lucy1+Tom+Lucy

        1+Jone+Lucy

        2+Lucy+Mary

        2+Lucy+Ben>

<Mary1+Lucy+Mary

        2+Mark+Terry

        2+Mark+Alma>

<Philip2+Philip+Terry

        2+Philip+Alma>

<Terry2+Terry+Alice

        2+Terry+Jesse

        1+Philip+Terry

        1+Mark+Terry>

<Tom2+Tom+Lucy

        2+Tom+Jack>

 

    (3)Reduce处理

    首先由语句"0 != grandchildnum && 0 != grandparentnum"得知,只要在"value-list"中没有左表或者右表,则不会做处理,可以根据这条规则去除无效shuffle连接

 

无效shuffle连接

有效shuffle连接

<Alice1+Jack+Alice

        1+Terry+Alice 

        1+Philip+Alma

        1+Mark+Alma >

<Ben1+Lucy+Ben>

<Jesse1+Jack+Jesse

        1+Terry+Jesse >

<Jone2+Jone+Lucy

        2+Jone+Jack>

<Mary1+Lucy+Mary

        2+Mark+Terry

        2+Mark+Alma>

<Philip2+Philip+Terry

        2+Philip+Alma>

<Tom2+Tom+Lucy

        2+Tom+Jack>

<Jack1+Tom+Jack

        1+Jone+Jack

        2+Jack+Alice

        2+Jack+Jesse >

<Lucy1+Tom+Lucy

        1+Jone+Lucy

        2+Lucy+Mary

        2+Lucy+Ben>

<Terry2+Terry+Alice

        2+Terry+Jesse

        1+Philip+Terry

        1+Mark+Terry>

    然后根据下面语句进一步对有效的shuffle连接做处理。

 

// 左表,取出child放入grandchildren

if ('1' == relationtype) {

    grandchild[grandchildnum] = childname;

    grandchildnum++;

}

 

// 右表,取出parent放入grandparent

if ('2' == relationtype) {

    grandparent[grandparentnum] = parentname;

    grandparentnum++;

}

 

    针对一条数据进行分析:

 

<Jack,1+Tom+Jack,

        1+Jone+Jack,

        2+Jack+Alice,

        2+Jack+Jesse >

 

    分析结果左表用"字符1"表示,右表用"字符2"表示,上面的<key,value-list>中的"key"表示左表与右表连接键。而"value-list"表示以"key"连接左表与右表相关数据

    根据上面针对左表与右表不同的处理规则,取得两个数组的数据如下所示:

 

grandchild

TomJonegrandchild[grandchildnum] = childname;

grandparent

AliceJessegrandparent[grandparentnum] = parentname;

    

    然后根据下面语句进行处理。

 

for (int m = 0; m < grandchildnum; m++) {

    for (int n = 0; n < grandparentnum; n++) {

        context.write(new Text(grandchild[m]), new Text(grandparent[n]));

    }

}

 

image  

 

处理结果如下面所示:

 

Tom        Jesse

Tom        Alice

Jone        Jesse

Jone        Alice 

    其他的有效shuffle连接处理都是如此

3)查看运行结果

    这时我们右击Eclipse的"DFS Locations"中"/user/hadoop"文件夹进行刷新,这时会发现多出一个"STjoin_out"文件夹,且里面有3个文件,然后打开双其"part-r-00000"文件,会在Eclipse中间把内容显示出来。如图4.4-4所示。

 

图4.4-4 运行结果

posted on 2013-05-22 14:22  北京_飞狐  阅读(294)  评论(0编辑  收藏  举报