c++并发编程之thread::join()和thread::detach()
thread::join(): 阻塞当前线程,直至 *this 所标识的线程完成其执行。*this 所标识的线程的完成同步于从 join() 的成功返回。
该方法简单暴力,主线程等待子进程期间什么都不能做。thread::join()会清理子线程相关的内存空间,此后thread object将不再和这个子线程相关了,即thread object不再joinable了,所以join对于一个子线程来说只可以被调用一次,为了实现更精细的线程等待机制,可以使用条件变量等机制。
#include <iostream> #include <thread> #include <chrono> void foo() { std::cout << "foo is started\n"; // 模拟昂贵操作 std::this_thread::sleep_for(std::chrono::seconds(1)); std::cout << "foo is done\n"; } void bar() { std::cout << "bar is started\n"; // 模拟昂贵操作 std::this_thread::sleep_for(std::chrono::seconds(1)); std::cout << "bar is done\n"; } int main() { std::cout << "starting first helper...\n"; std::thread helper1(foo); std::cout << "starting second helper...\n"; std::thread helper2(bar); std::cout << "waiting for helpers to finish...\n" << std::endl; helper1.join(); helper2.join(); std::cout << "done!\n"; }
运行结果:
starting first helper... starting second helper... foo is started waiting for helpers to finish... bar is started foo is done bar is done done!
异常环境下join,假设主线程在一个函数f()里面创建thread object,接着f()又调用其它函数g(),那么确保在g()以任何方式下退出主线程都能join子线程。如:若g()通过异常退出,那么f()需要捕捉异常后join.
#include<iostream> #include<boost/thread.hpp> void do_something(int& i){ i++; } class func{ public: func(int& i):i_(i){} void operator() (){ for(int j=0;j<100;j++) do_something(i_); } public: int& i_; }; void do_something_in_current_thread(){} void f(){ int local=0; func my_func(local); boost::thread t(my_func); try{ do_something_in_current_thread(); } catch(...){ t.join();//确保在异常条件下join子线程 throw; } t.join(); } int main(){ f(); return 0; }
上面的方法看起来笨重,有个解决办法是采用RAII(资源获取即初始化),将一个thread object通过栈对象A管理,在栈对象A析构时调用thread::join.按照局部对象析构是构造的逆序,栈对象A析构完成后再析构thread object。如下:
#include<iostream> #include<boost/noncopyable.hpp> #include<boost/thread.hpp> using namespace std; class thread_guard:boost::noncopyable{ public: explicit thread_guard(boost::thread& t):t_(t){} ~thread_guard(){ if(t_.joinable()){//检测是很有必要的,因为thread::join只能调用一次,要防止其它地方意外join了 t_.join(); } } //thread_guard(const thread_guard&)=delete;//c++11中这样声明表示禁用copy constructor需要-std=c++0x支持,这里采用boost::noncopyable已经禁止了拷贝和复制 //thread_guard& operator=(const thread_guard&)=delete; private: boost::thread& t_; }; void do_something(int& i){ i++; } class func{ public: func(int& i):i_(i){} void operator()(){ for(int j=0;j<100;j++) do_something(i_); } public: int& i_; }; void do_something_in_current_thread(){} void fun(){ int local=0; func my_func(local); boost::thread t(my_func); thread_guard g(t); do_something_in_current_thread(); } int main(){ fun(); return 0; }
thread::detach(): 从 thread 对象分离执行的线程,允许执行独立地持续。一旦线程退出,则释放所有分配的资源。调用 detach
后, *this 不再占有任何线程。
#include <iostream> #include <chrono> #include <thread> void independentThread() { std::cout << "Starting concurrent thread.\n"; std::this_thread::sleep_for(std::chrono::seconds(2)); std::cout << "Exiting concurrent thread.\n"; } void threadCaller() { std::cout << "Starting thread caller.\n"; std::thread t(independentThread); t.detach(); std::this_thread::sleep_for(std::chrono::seconds(1)); std::cout << "Exiting thread caller.\n"; } int main() { threadCaller(); std::this_thread::sleep_for(std::chrono::seconds(5));
std::cout << "back to main.\n";
}
运行结果:
Starting thread caller.
Starting concurrent thread.
Exiting thread caller.
Exiting concurrent thread.
back to main.
如果注释掉main函数里的std::this_thread::sleep_for(std::chrono::seconds(5)); 即不等待independentThread 执行完。运行结果如下:
Starting thread caller.
Starting concurrent thread.
Exiting thread caller.
back to main.