sqlalchemy
信号
Flask框架中的信号基于blinker(安装这个模块),其主要就是让开发者可是在flask请求过程中定制一些用户行为 flask 和django都有
#观察者模式,又叫发布-订阅(Publish/Subscribe) 23 种设计模式之一
安装:
pip3.8 install blinker
信号:signial 翻译过来的,并发编程中学过 信号量Semaphore
# 比如:用户表新增一条记录,就记录一下日志
-方案一:在每个增加后,都写一行代码 ---》后期要删除,比较麻烦
-方案二:使用信号,写一个函数,绑定内置信号,只要程序执行到这,就会执行这个函数
# 内置信号: flask少一些,django多一些
request_started = _signals.signal('request-started') # 请求到来前执行
request_finished = _signals.signal('request-finished') # 请求结束后执行
before_render_template = _signals.signal('before-render-template') # 模板渲染前执行
template_rendered = _signals.signal('template-rendered') # 模板渲染后执行
got_request_exception = _signals.signal('got-request-exception') # 请求执行出现异常时执行
request_tearing_down = _signals.signal('request-tearing-down') # 请求执行完毕后自动执行(无论成功与否)
appcontext_tearing_down = _signals.signal('appcontext-tearing-down')# 应用上下文执行完毕后自动执行(无论成功与否)
appcontext_pushed = _signals.signal('appcontext-pushed') # 应用上下文push时执行
appcontext_popped = _signals.signal('appcontext-popped') # 应用上下文pop时执行
message_flashed = _signals.signal('message-flashed') # 调用flask在其中添加数据时,自动触发
# 使用内置信号的步骤
1 写一个函数
2 绑定内置信号
3 等待被触发
写一个内置的信号
from flask import Flask, request_started
app = Flask(__name__)
def task(*args, **kwargs):
# 要写两个参数,因为信号需要传参数,不是我们自己定的
print('这是一个请求来之前执行的信号')
# 这句话是给信号绑定函数
request_started.connect(task)
@app.route('/')
def home():
return 'home页面'
if __name__ == '__main__':
app.run()
自定义信号
# 1 定义出信号
from flask.signals import _signals
session_set = _signals.signal('session_set')
# 2 写一个函数
def test1(*args, **kwargs):
print(args)
print(kwargs)
print('session设置值了')
# 3 绑定自定义的信号
# session_set.connect(test1)
# 4 触发信号的执行(咱们做)
# session_set.send('lqz') # 触发信号执行
# django中使用信号
https://www.cnblogs.com/liuqingzheng/articles/9803403.html
django信号
Model signals
pre_init # django的modal执行其构造方法前,自动触发
post_init # django的modal执行其构造方法后,自动触发
pre_save # django的modal对象保存前,自动触发
post_save # django的modal对象保存后,自动触发
pre_delete # django的modal对象删除前,自动触发
post_delete # django的modal对象删除后,自动触发
m2m_changed # django的modal中使用m2m字段操作第三张表(add,remove,clear)前后,自动触发
class_prepared # 程序启动时,检测已注册的app中modal类,对于每一个类,自动触发
Management signals
pre_migrate # 执行migrate命令前,自动触发
post_migrate # 执行migrate命令后,自动触发
Request/response signals
request_started # 请求到来前,自动触发
request_finished # 请求结束后,自动触发
got_request_exception # 请求异常后,自动触发
Database Wrappers
connection_created # 创建数据库连接时,自动触发
"django中使用内置信号"
1 写一个函数
def callBack(*args, **kwargs):
print(args)
print(kwargs)
2 绑定信号
#方式一
post_save.connect(callBack)
# 方式二
from django.db.models.signals import pre_save
from django.dispatch import receiver
@receiver(pre_save)
def my_callback(sender, **kwargs):
print("对象创建成功")
print(sender)
print(kwargs)
3 等待触发
flask-script
# django中,有命令
python manage.py runserver
。。。
#flask启动项目,像djagno一样,通过命令启动
Flask==2.2.2
Flask_Script==2.0.3
#借助于:flask-script 实现
-安装:pip3.8 install flask-script
-修改代码:
from flask_script import Manager
manager=Manager(app)
manager.run()
-用命令启动
python manage.py runserver
# 自定制命令
#1 简单自定制命令
@manager.command
def custom(arg):
# 命令的代码,比如:初始化数据库, 有个excel表格,使用命令导入到mysql中
print(arg)
#2 复杂一些的自定制命令
@manager.option('-n', '--name', dest='name')
@manager.option('-u', '--url', dest='url')
def cmd(name, url):
# python run.py cmd -n lqz -u xxx
# python run.py cmd --name lqz --url uuu
print(name, url)
# django 中如何自定制命令
sqlalchemy 快速使用
flask中没有orm框架,对象关系映射,方便我们快速操作数据库
flask,fastapi中用sqlalchemy居多
SQLAlchemy是一个基于Python实现的ORM框架。该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然后使用数据API执行SQL并获取执行结果
安装:pip3 install sqlalchemy
#了解
SQLAlchemy本身无法操作数据库,其必须以来pymsql等第三方插件
pymysql
mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
cx_Oracle
oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
更多:http://docs.sqlalchemy.org/en/latest/dialects/index.html
sqlalchemy介绍和快速使用
原生操作的快速使用
# 先不是orm,而是原生sql
# 第一步:导入
from sqlalchemy import create_engine
# 第二步:生成引擎对象
engine = create_engine(
"mysql+pymysql://root@127.0.0.1:3306/cnblogs",
max_overflow=0, # 超过连接池大小外最多创建的连接
pool_size=5, # 连接池大小
pool_timeout=30, # 池中没有线程最多等待的时间,否则报错
pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置)
)
# 第三步:使用引擎获取连接,操作数据库
conn = engine.raw_connection()
cursor=conn.cursor()
cursor.execute('select * from aritcle')
print(cursor.fetchall())
创建操作数据表
# 第一步:导入
from sqlalchemy import create_engine
import datetime
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
# 第二步:执行declarative_base,得到一个类
Base = declarative_base()
# 第三步:继承生成的Base类
class User(Base):
# 第四步:写字段
id = Column(Integer, primary_key=True) # 生成一列,类型是Integer,主键
name = Column(String(32), index=True, nullable=False) # name列varchar32,索引,不可为空
email = Column(String(32), unique=True)
# datetime.datetime.now不能加括号,加了括号,以后永远是当前时间
ctime = Column(DateTime, default=datetime.datetime.now)
# extra = Column(Text, nullable=True)
# 第五步:写表名 如果不写以类名为表名
__tablename__ = 'users' # 数据库表名称
# 第六步:建立联合索引,联合唯一
__table_args__ = (
UniqueConstraint('id', 'name', name='uix_id_name'), # 联合唯一
Index('ix_id_name', 'name', 'email'), # 索引
)
class Book(Base):
__tablename__ = 'books'
id = Column(Integer, primary_key=True)
name = Column(String(32))
# 第七步:把表同步到数据库中
# 不会创建库,只会创建表
engine = create_engine(
"mysql+pymysql://root@127.0.0.1:3306/aaa",
max_overflow=0, # 超过连接池大小外最多创建的连接
pool_size=5, # 连接池大小
pool_timeout=30, # 池中没有线程最多等待的时间,否则报错
pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置)
)
# 把表同步到数据库 (把被Base管理的所有表,都创建到数据库)
Base.metadata.create_all(engine)
# 把所有表删除
# Base.metadata.drop_all(engine)
sqlalchemy快速插入数据
sqlalchemy是什么 orm框架,跟其他web框架没有必然联系,可以独立使用
# 安装,快速使用,执行原生sql
# 创建表和删除表
-不能创建数据库
-不能修改字段(增加,删除)
使用orm插入数据
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from models import Book
# 第一步:生成engine对象
engine = create_engine(
"mysql+pymysql://root@127.0.0.1:3306/aaa",
max_overflow=0, # 超过连接池大小外最多创建的连接
pool_size=5, # 连接池大小
pool_timeout=30, # 池中没有线程最多等待的时间,否则报错
pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置)
)
# 第二步:拿到一个Session类,传入engine
Session=sessionmaker(bind=engine)
# 第三步:拿到session对象,相当于连接对象(会话)
session=Session()
# 第四步,增加数据,产生一个数据对象,然后使用add方法进行添加
book=Book(name='红楼梦',)
session.add(book) # add_all 可以添加多个,([对象1,对象2])这样的形式
session.commit()
# 第五步:关闭session对象
session.close()
scoped_session线程安全
基本使用
from sqlalchemy.orm import scoped_session
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
# 第一步:生成engine对象
engine = create_engine(
"mysql+pymysql://root@127.0.0.1:3306/aaa",
max_overflow=0, # 超过连接池大小外最多创建的连接
pool_size=5, # 连接池大小
pool_timeout=30, # 池中没有线程最多等待的时间,否则报错
pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置)
)
# 第二步:拿到一个Session类,传入engine
Session = sessionmaker(bind=engine)
# 线程不安全
# session = Session()
# 做成线程安全的:如何做的?
# 内部使用了local对象,取当前线程的session,如果当前线程有,就直接返回用,如果没有,创建一个,放到local中
# session 是 scoped_session 的对象
session = scoped_session(Session)
# 以后全局使用session即可,它线程安全
加在类上的装饰器
# session 是 scoped_session 的对象,类上没有属性和方法,但是,用的时候,确实用
session = scoped_session(Session)
def speak():
print('说话了')
def wrapper(func):
def inner(*args, **kwargs):
res = func()
res.name = 'lqz'
res.speak = speak
return res
return inner
@wrapper # 语法糖会把Person当参数传入到装饰器中 Person=wrapper(Person)
class Person:
pass
# 这里的p其实就是res,所以是装饰器里面产生了一个对象,然后被p接收了,因此p.name才有值,而不是产生了一个新的对象,因为加了装饰器以后,Person其实是inner函数了,函数加括号接收返回值
p = Person()
print(Person) # 打印Person其实是inner的内存地址<function wrapper.<locals>.inner at 0x00000119357B9310>
print(p.name)
p.speak()
基本的增删查改
固定写法:
from models import User, Book
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.orm import scoped_session
from sqlalchemy.sql import text
engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/aaa")
Session = sessionmaker(bind=engine)
session = scoped_session(Session)
增加(add,add_all)
user = User(name='pyy', email='44@qq.com', extra='摄氏度法')
user1 = User(name='yyy', email='4@qq.com', extra='大沙发斯蒂芬')
book = Book(name='西游记')
session.add(user) # 新增单个
session.add_all([user, user1, book]) # 多个对象可以是models中任意表模型的对象
session.commit() # 保存到数据库中,这句话不能丢
session.close() # 关闭连接
基本查(filter,filter_by)
filter:写条件
session.query(User) 中写表模型,可以写多个表模型(连表操作) select * from User;
filter 过滤条件,必须写表达式 == >= <= != select * from user where user.id=1
all:普通列表 first拿到列表第一个
user = session.query(User).filter(User.name == 'lqz').first()
user = session.query(User).filter(User.name != 'lqz').all()
print(user)
res = session.query(User).filter(User.id > 1).all()
print(res)
filter_by:等于的值
"直接写等式 不能写成 User.name = 'lqz'"
user = session.query(User).filter_by(name='lqz').first()
user = session.query(User).filter_by(id=2).first()
user = session.query(User).filter_by(id=2).first()
print(user)
删除(查看才能删除)
filter或filter_by查询的结果 不要all或first出来, .delete()即可
res = session.query(User).filter_by(id=2).delete()
session.commit() # 一定不要忘了
print(res) # 影响的行数
修改(查看才能修改)
方式一:update修改
# res = session.query(User).filter_by(id=3).update({"name" : "彭于晏"})
# print(res)
# session.commit()
方式二,使用对象修改
# res = session.query(User).filter_by(id=3).first()
# res = session.query(User).filter_by(name='zzz').first()
# res.name='来来来'
# print(res.id)
# session.add(res) # add 如果有主键,就是修改,如果没有主键就是新增
# session.commit()
高级查询
查询所有
# res = session.query(User).all() # 是个普通列表
# print(type(res))
# print(len(res))
只查询某几个字段
# select name as xx,email from user;
# res = session.query(User.name.label('xx'), User.email)
# print(res) # 打出原生sql
# # print(res.all())
# for item in res.all():
# print(item[0])
查询所有,使用占位符
# select * from user where id <20 or name=lqz099
res = session.query(User).filter(text("id<:value or name=:name")).params(value=10, name='lqz099').all()
自定义查询
from_statement 写纯原生sql
res=session.query(User).from_statement(text("SELECT * FROM users where email=:email")).params(email='3@qq.com').all()
print(type(res[0])) # 是book的对象,但是查的是User表 不要这样写
print(res[0].name) #
高级查询:表达式,and条件连接
res = session.query(User).filter(User.id > 1, User.name == 'lqz099').all() # and条件
高级查询:between(范围)
res = session.query(User).filter(User.id.between(1, 9), User.name == 'lqz099').all()
# 代表范围是1-9的id
res = session.query(User).filter(User.id.between(1, 9)).all()
高级查询:in
res = session.query(User).filter(User.id.in_([1,3,4])).all()
res = session.query(User).filter(User.email.in_(['3@qq.com','r@qq.com'])).all()
非,除。。。外
res = session.query(User).filter(~User.id.in_([1,3,4])).all()
# 波浪线代表取反的意思
print(res)
二次筛选
# res = session.query(User).filter(~User.id.in_(session.query(User.id).filter_by(name='lqz099'))).all()
# print(res)
and or 条件
from sqlalchemy import and_, or_
# or_包裹的都是or条件,and_包裹的都是and条件
# res = session.query(User).filter(and_(User.id >= 3, User.name == 'lqz099')).all() # and条件
# res = session.query(User).filter(User.id < 3, User.name == 'lqz099').all() # 等同于上面
# res = session.query(User).filter(or_(User.id < 2, User.name == 'eric')).all()
# res = session.query(User).filter(
# or_(
# User.id < 2,
# and_(User.name == 'lqz099', User.id > 3),
# User.extra != ""
# )).all()
通配符
# res = session.query(User).filter(User.email.like('%@%')).all()
# select user.id from user where user.name not like e%;
# res = session.query(User.id).filter(~User.name.like('e%'))
分页
# 一页2条,查第5页
# res = session.query(User)[2*5:2*5+2]
排序
# 排序,根据name降序排列(从大到小)
# res = session.query(User).order_by(User.email.desc()).all()
# res = session.query(Book).order_by(Book.price.desc()).all()
# res = session.query(Book).order_by(Book.price.asc()).all()
# 第一个条件重复后,再按第二个条件升序排
# res = session.query(User).order_by(User.name.desc(), User.id.asc())
分组查询
from sqlalchemy.sql import func
# res = session.query(User).group_by(User.extra) # 如果是严格模式,就报错
# 分组之后取最大id,id之和,最小id 和分组的字段
# res = session.query(
# User.extra,
# func.max(User.id),
# func.sum(User.id),
# func.min(User.id)).group_by(User.extra).all()
# for item in res:
# print(item[2])
# having
# select max(id),sum(id),min(id) from user group by user.extra having id_max>2;
res = session.query(
func.max(User.id),
func.sum(User.id),
func.min(User.id)).group_by(User.extra).having(func.max(User.id) > 2)
原生sql
### 方式一:
# 第一步:导入
from sqlalchemy import create_engine
# 第二步:生成引擎对象
engine = create_engine(
"mysql+pymysql://root@127.0.0.1:3306/cnblogs",
max_overflow=0, # 超过连接池大小外最多创建的连接
pool_size=5, # 连接池大小
pool_timeout=30, # 池中没有线程最多等待的时间,否则报错
pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置)
)
# 第三步:使用引擎获取连接,操作数据库
conn = engine.raw_connection()
cursor=conn.cursor()
cursor.execute('select * from aritcle')
print(cursor.fetchall())
### 方式二:
from models import User, Book
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.orm import scoped_session
engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/aaa")
Session = sessionmaker(bind=engine)
session = scoped_session(Session)
# 2.0.9 版本需要使用text包裹一下,原来版本不需要
# cursor = session.execute(text('select * from users'))
# result = cursor.fetchall()
# print(result)
cursor = session.execute(text('insert into books(name) values(:name)'), params={"name": '红楼梦'})
session.commit()
print(cursor.lastrowid)
session.close()
django中执行原生sql
# 选择的查询基表Book.objects.raw ,只是一个傀儡,正常查询出哪些字段,都能打印出来
def index(request):
# books = Book.objects.raw('select * from app01_book where id=1') # RawQuerySet 用起来跟列表一样
# books = Publish.objects.raw('select * from app01_book where id=1') # RawQuerySet 用起来跟列表一样
# print(books[0])
# print(type(books[0]))
# # for book in books:
# # print(book.name)
# # print(books[0].name)
# print(books[0].addr) #也能拿出来,但是是不合理的
res = Book.objects.raw('select * from app01_publish where id=1') # RawQuerySet 用起来跟列表一样
print(res[0])
print(type(res[0]))
print(res[0].name)
# book 没有addr,但是也打印出来了
print(res[0].addr)
return HttpResponse('ok')
一对多表的创建
一对一:本身是一个表,拆成了两个表,做成一对一的关联,本质就是一对多,只不过关联字段唯一
一对多:关联字段在多的一方
多对多:需要建立中间表,本质也是一对多
表模型
# 一对多关系
from sqlalchemy import create_engine
import datetime
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
from sqlalchemy.orm import relationship
# 第二步:执行declarative_base,得到一个类
Base = declarative_base()
class Hobby(Base):
__tablename__ = 'hobby'
id = Column(Integer, primary_key=True)
caption = Column(String(50), default='篮球')
class Person(Base):
__tablename__ = 'person'
id = Column(Integer, primary_key=True)
name = Column(String(32), index=True, nullable=True)
# hobby指的是tablename而不是类名
# 关联字段写在多的一方,写在Person中,跟hobby表中id字段做外键关联
hobby_id = Column(Integer, ForeignKey("hobby.id"))
# 跟数据库无关,不会新增字段,只用于快速链表操作
# 基于对象的跨表查询:就要加这个字段,取对象 person.hobby pserson.hobby_id
# 类名,backref用于反向查询
hobby = relationship('Hobby', backref='pers') # 如果有hobby对象,拿到所有人 hobby.pers
def __repr__(self):
return self.name
engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/aaa", )
# 把表同步到数据库 (把被Base管理的所有表,都创建到数据库)
Base.metadata.create_all(engine)
# 把所有表删除
# Base.metadata.drop_all(engine)
一对多的新增和基于对象的查询
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.orm import scoped_session
from models1 import Hobby, Person
engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/aaa")
Session = sessionmaker(bind=engine)
session = scoped_session(Session)
# 一对多新增
# hobby = Hobby(caption='乒乓球')
# session.add(hobby)
# person = Person(name='张三')
# session.add(person)
# hobby=session.query(Hobby).filter(Hobby.caption=='乒乓球').first()
# # person = Person(name='王五',hobby_id=hobby.id)
# person = Person(name='王五',hobby_id=1)
# session.add(person)
# 支持按对象的增加方式,必须加relationship 做关联
# 方式一
# hobby=session.query(Hobby).filter(Hobby.caption=='乒乓球').first()
# person = Person(name='赵六',hobby=hobby)
# 方式二
# hobby = Hobby(caption='羽毛球') # 表中暂时没有
# person = Person(name='赵六', hobby=hobby)
# session.add_all([person, hobby])
# session.commit()
## 基于对象的跨表查询 .
# 正向查询
# person=session.query(Person).filter(Person.name=='王五').first()
# # print(person.hobby_id)
# print(person.hobby) # Hobby 的对象
# 反向查询
# hobby=session.query(Hobby).filter(Hobby.id==1).first()
# print(hobby.pers)
# 基于连表的查询(一会讲)
多对多
表模型
# 一对多关系
from sqlalchemy import create_engine
import datetime
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
from sqlalchemy.orm import relationship
# 第二步:执行declarative_base,得到一个类
Base = declarative_base()
# 多对多
# 中间表 手动创建
class Boy2Girl(Base):
__tablename__ = 'boy2girl'
id = Column(Integer, primary_key=True, autoincrement=True)
girl_id = Column(Integer, ForeignKey('girl.id'))
boy_id = Column(Integer, ForeignKey('boy.id'))
class Girl(Base):
__tablename__ = 'girl'
id = Column(Integer, primary_key=True)
name = Column(String(64), unique=True, nullable=False)
def __str__(self):
return self.name
def __repr__(self):
return self.name
class Boy(Base):
__tablename__ = 'boy'
id = Column(Integer, primary_key=True, autoincrement=True)
name = Column(String(64), unique=True, nullable=False)
# 与生成表结构无关,仅用于查询方便,放在哪个单表中都可以
# 方便快速查询,写了这个字段,相当于django 的manytomany,快速使用基于对象的跨表查询
girls = relationship('Girl', secondary='boy2girl', backref='boys')
def __str__(self):
return self.name
def __repr__(self):
return self.name
engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/aaa", )
# 把表同步到数据库 (把被Base管理的所有表,都创建到数据库)
Base.metadata.create_all(engine)
# 把所有表删除
# Base.metadata.drop_all(engine)
增加和基于对象的跨表查询
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.orm import scoped_session
from models2 import Girl, Boy, Boy2Girl
engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/aaa")
Session = sessionmaker(bind=engine)
session = scoped_session(Session)
# 新增
# 1 笨办法新增
# girl=Girl(name='刘亦菲')
# boy=Boy(name='彭于晏')
# session.add_all([girl,boy])
# session.add(Boy2Girl(girl_id=1,boy_id=1))
# session.commit()
# 2 使用relationship
# boy = Boy(name='lqz')
# boy.girls = [Girl(name='迪丽热巴'), Girl(name='景田')]
# session.add(boy)
# session.commit()
# 基于对象的跨表查询
# 正向
# boy = session.query(Boy).filter(Boy.id==2).first()
# print(boy.girls)
# 反向
# girl = session.query(Girl).filter(Girl.id==2).first()
# print(girl.boys)
# 如果没有relationship,纯自己操作
# 基于连表的查询(一会讲)
连表查询
### 关联关系,基于连表的跨表查询
from models1 import Person,Hobby
# 链表操作
# select * from person,hobby where person.hobby_id=hobby.id;
# res = session.query(Person, Hobby).filter(Person.hobby_id == Hobby.id).all()
# 自己连表查询
# join表,默认是inner join,自动按外键关联
# select * from Person inner join Hobby on Person.hobby_id=Hobby.id;
# res = session.query(Person).join(Hobby).all()
#isouter=True 外连,表示Person left join Favor,没有右连接,反过来即可
# select * from Person left join Hobby on Person.hobby_id=Hobby.id;
# res = session.query(Person).join(Hobby, isouter=True).all()
# 没有right join,通过这个实现
# res = session.query(Hobby).join(Person, isouter=True).all()
# # 自己指定on条件(连表条件),第二个参数,支持on多个条件,用and_,同上
# select * from Person left join Hobby on Person.id=Hobby.id;
# res = session.query(Person).join(Hobby, Person.hobby_id == Hobby.id, isouter=True) # sql本身有问题,只是给你讲, 自己指定链接字段
# 右链接
# print(res)
# 多对多关系连表
# 多对多关系,基于链表的跨表查
#方式一:直接连
res = session.query(Boy, Girl,Boy2Girl).filter(Boy.id == Boy2Girl.boy_id,Girl.id == Boy2Girl.girl_id).all()
# 方式二:join连
res = session.query(Boy).join(Boy2Girl).join(Girl).filter(Person.id>=2).all()