Spark入门:Spark运行架构(Python版)

此文为个人学习笔记如需系统学习请访问http://dblab.xmu.edu.cn/blog/1709-2/#

基本概念#

*  RDD:是弹性分布式数据集(Resilient Distributed Dataset)的简称,是分布式内存的一个抽象概念,提供了一种高度受限的共享内存模型;
*  DAG:是Directed Acyclic Graph(有向无环图)的简称,反映RDD之间的依赖关系;
*  Executor:是运行在工作节点(Worker Node)上的一个进程,负责运行任务,并为应用程序存储数据;
*  应用:用户编写的Spark应用程序;
*  任务:运行在Executor上的工作单元;
*  作业:一个作业包含多个RDD及作用于相应RDD上的各种操作;
*  阶段:是作业的基本调度单位,一个作业会分为多组任务,每组任务被称为“阶段”,或者也被称为“任务集”。

架构设计、Spark运行基本流程——没看很懂回头再看

posted @   莫逸风  阅读(89)  评论(0编辑  收藏  举报
编辑推荐:
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
阅读排行:
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
点击右上角即可分享
微信分享提示
CONTENTS