判断32位整数二进制中1的个数的算法

再转 http://blog.chinaunix.net/uid-20480343-id-1941577.html
今天在CU上看到了关于 “判断32位整数二进制中1的个数的算法” 的问题。因为马上就要下班,没有时间再研究了。只好先把论坛中帖子的地址拷贝下来了。学习ing....

http://dev.bibts.com/32-1-t936968.htm

http://www.chinaunix.net/jh/23/795048.html

在下面的英文网址中,对这个问题有详细的介绍:

http://www.everything2.com/index.pl?node=counting%201%20bits

http://www.everything2.com/index.pl?node=counting%201%20bits%20SPOILER

http://www.everything2.com/index.pl?node_id=1181258

刚开始看到这个问题的时候,我就傻乎乎的开始写代码:

unsigned int FindOneInNumber_00(unsigned int x)
{
    unsigned int i,j=1;
    unsigned int count=0;
    for(i=0;i<32;i++)
    {
        if((x & j) != 0) count++;
        j = j<<2;
    }
    return count;
}
下面是我写的
 



很明显我的这段代码写的是非常糟糕的。每次传过来一个数字,我总是要进行32次扫描。就这一点就可以说我的代码是典型的垃圾代码,那么别人是不是有简洁一点的代码呢。在上面的三个英文网址中找到了一些东西。

unsigned int FindOneInNumber_01(unsigned int x)
{
    unsigned int n;
    for(n=0; x; x >>= 1)
        if (x & 1) n++;
    return n;
}

在英文文档中,原作者给出的第一种方法。看到这样的代码,俺只能说自己太笨,代码写起来太傻。不就是查查一个数字中 1 的个数吗?自己为啥非得要把所有的 位 都扫描呢? 这是一个值得想想的问题。 原作者给出的代码已经是很不错了,不过,在下面接着他又给出了第二种解法,这第二种解法,更是简洁 优雅 。

unsigned int FindOneInNumber_02(unsigned int x)
{
    unsigned int n;
    for(n=0; x; n++)
        x &= x-1;
    return n;
}
原作者给出的第二种方法明显的要优于第一种方法。两者的程序中,循环体执行完后,n表示 1 个个数。x的值变为 0 。两者都达到了目的,循环次数也是一样的。但是二者的区别就在于 第二种方法不用 执行条件判断跳转。当数据量的比较大的时候,二者的差距还是蛮大的。

原文作者又给出第三种方法来解决这个问题:

unsigned FindOneInNumber_03(unsigned int x)
{
    const unsigned MASK1  = 0x55555555;
    const unsigned MASK2  = 0x33333333;
    const unsigned MASK4  = 0x0f0f0f0f;
    const unsigned MASK8  = 0x00ff00ff;
    const unsigned MASK16 = 0x0000ffff;

    x = (x&MASK1 ) + (x>>1 &MASK1 );
    x = (x&MASK2 ) + (x>>2 &MASK2 );
    x = (x&MASK4 ) + (x>>4 &MASK4 );
    x = (x&MASK8 ) + (x>>8 &MASK8 );
    x = (x&MASK16) + (x>>16&MASK16);
    return x;
}

原文作者的一个朋友又给出一种方法,【查表法】,不过,这样要浪费一定的主存。这种方法也是一个很不错的方法,不过,在单片机下开发的时候,就是个问题的了。象我们公司在单片机上开发游戏,所有的能够给 图片、声音、程序的所有ROM空间仅仅 8MB,采用这种方法就是很不明智的一种选择了。
unsigned numbits_lookup_table[256] = {
    0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2,
    3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3,
    3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3,
    4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4,
    3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5,
    6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4,
    4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5,
    6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5,
    3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3,
    4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6,
    6, 7, 6, 7, 7, 8
};
unsigned FindOneInNumber_04(unsigned int x)
{
    unsigned n;
    
    n = numbits_lookup_table[x & 0xff];
    n += numbits_lookup_table[x>>8  & 0xff];
    n += numbits_lookup_table[x>>16 & 0xff];
    n += numbits_lookup_table[x>>24 & 0xff];
    
    return n;
}
【本程序在Dev C++ 4.9.9.2 下编译通过】
posted @ 2016-09-20 16:33  张飞online  阅读(3128)  评论(0编辑  收藏  举报