hadoop2.6.0的eclipse插件安装

 1.安装插件

  • 配置 hadoop 安装目录

  

  

  • 配置Map/Reduce 视图

  

  

  

  

  • 点击"大象"

  

  • 在“Map/Reduce Locations” Tab页 点击图标“大象”,选择“New Hadoop location…”,弹出对话框“New hadoop location…”。填写Location name和右边的Port:9000(与配置文件core-site.xml中的保持一致)。

  

 

  • 在Advanced paramenters中如下图所示找到hadoop.tmp.dir选项,与配置文件core-site.xml保持一致。

以及dfs.namenode.name.dir和dfs.datanode.data.dir与配置文件hdfs-site.xml保持一致

        

  • 启动hadoop:  sbin/start-all.sh   然后执行  jps。多一个org.eclipse.equinox.launcher...

  

  • 打开Project Explorer,查看HDFS文件系统。这是前篇文章中配置hadoop中的运行的结果。传送门

  

 2.运行WordCount的例子 

  • 新建Map/Reduce任务

  

  

  

 

   

  • 编写WordCount
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;
public class WordCount {
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line);
 while (tokenizer.hasMoreTokens()) {
   word.set(tokenizer.nextToken());
   output.collect(word, one);
 }
}
}
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
   sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);
conf.setReducerClass(Reduce.class);

conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);
}
}
  • 添加log4j.properties文件,很重要。

  

内容:

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

 

结果如下

 

  

  • 空白处右键,配置运行时参数

  

 

output写成hdfs://localhost:9000/user/hadoop/output 或者其他名,下面并没有写错。

注意:output文件夹在HDFS文件系统每次运行前必须重新删除,否则出错。或者写成其他名字亦可。

 

  

  最后点Run运行。控制台输出

   

  • Project Explorer反应并不及时,点击F5刷新或者:

  • 最后查看结果,结果放在output文件夹中(与Run Configurations中配置的地址一致)

  

  

 

posted @ 2015-07-23 01:22  记忆的稻草人  阅读(1745)  评论(0编辑  收藏  举报