最长上升子序列

最长上升子序列是使用动态规划求解的经典题目。
B3637 最长上升子序列

1. 题目描述

给定一个长度为N的数列(w[N]),求数值严格单调递增的子序列的长度最长是多少。

2. 动态规划

使用动态规划的核心是构造状态转移表达式,先来看看这道题目是如何定义状态及转移方程的。
定义f[i]表示以w[i]结尾的最大上升序列长度,则在w[i] > w[j]时,f[i] = max(f[i], f[j] + 1),j=0,1,2,...,i-1。上面这种情况的时候要更新状态是不难理解的,但是这也导致f[i]是由小于i的最优解通过增加w[i]产生的,有没有可能f[i]是由小于i的非最优解产生的呢,也就是说在w[i] <= w[j]时,f[j]也存在信息,可以用于产生最优解,其实仔细想一下这种情况就是去除w[j]后的上升子序列加上w[i]构成的,那么一定会存在一个对应于w[i] > w[q],并使用f[i] = max(f[i], f[q] + 1)进行更新,所以在w[i] <= w[j]时是不用再进行更新的。
下面看一下代码。

#include<iostream>
#include<algorithm>
using namespace std;

int n;
int w[5010]; //输入序列
int f[5010]; //状态记录

int main() {
    ios::sync_with_stdio(0);
    cin >> n;
    for(int i; i < n; i ++) {
        cin >> w[i];
    }
    int mx = 1;
    for(int i = 1; i < n; i ++) {
        f[i] = 1;
        for(int j = 0; j < i; j ++) {
            if(w[i] > w[j]) {
                f[i] = max(f[i], f[j] + 1);
            }
        }
        mx = max(mx, f[i]);
    }
    cout << mx;
    return 0;
}

动态规划的代码总是很简洁明了,但是想出来思路就很难,特别是第一次遇到某个题目。

3. 输出一个最长上升子序列

根据f[n]状态记录数组的定义,可以从小到大依次输出状态记录分别为mx,mx-1,...,1。最长上升子序列显然是可能不唯一的,下面的代码只输出一个。

int mx = 1, pos = 0;
for(int i = 0; i < n; i ++) {
    if(mx <= f[i]) {
        mx = f[i];
        pos = i;
    }
}
// 输出一个最长上升子序列
int *num = new int(mx);
num[0] = w[pos];
int cnt = 0;
for(int i = pos - 1; i >= 0; i --) {
    if(f[i] == mx - 1) {
        num[++ cnt] = w[i];
        mx --;
    }
}
for(int i = cnt; i >= 0; i --) {
    if(i < cnt) {
        cout << ' ';
    }
    cout << num[i];
}

参考资料

  1. 最长上升子序列(序列长度+序列输出)
posted @ 2023-10-09 22:43  张天明  阅读(29)  评论(0编辑  收藏  举报