Kernel Method, Kernel Mean Embedding 相关资源整理
-
几个重要的函数空间,Hilbert Spaces,L_p Spaces, Holder Spaces, Mercer Kernels 和 Reproducing Kernel Hilbert Spaces。参考文档:Function Spaces。该文档对理解RHKS比较抽象。
-
概述论文Muandet K, Fukumizu K, Sriperumbudur B, et al. Kernel mean embedding of distributions: A review and beyond[J]. Foundations and Trends® in Machine Learning, 2017, 10(1-2): 1-141. 论文链接
-
一个课程
Reproducing kernel Hilbert spaces in Machine Learning,地址:http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/rkhscourse.html
该课程包括的notes:
- 引入RHKS Introduction to RKHS, and some simple kernel algorithms
- Notes on mean embeddings and covariance operators
- the maximum mean discrepancy (MMD)
- Hilbert-Schmidt independence criterion HSIC
- 核函数在支持向量机中的应用SVM
其它文档后续补充...