poj-3739. Special Squares(二维前缀和)
题目链接:
I. Special Squares
There are some points and lines parellel to x-axis or y-axis on the plane. If arbitrary chosen two lines parallel to x-axis and two lines parallel to y-axis, one rectangle, or sometimes a square, will be formed. If a square is formed and there is one or more point in the square or on the side of the square, the square is called a "special square". Please find the number of special squares.
Input
The 1st line contains three positive integer n1, n2 and n3. n1 stands for the number of lines parallel to x-axis, n2 stands for the number of lines parallel to y-axis, n3 stands for the number of points.(0<n1, n2, n3≤1000)Each of the 2nd line to (n1+1)th line gives an integer y_i (0≤y_i≤1000), means a line with equation y=y_i.Each of the (n1+2)th line to (n1+n2+1)th line gives an integer x_j (0≤x_j≤1000), means a line with equation x=x_j.Each of the last three lines gives two integers px_k and py_k (0≤px_k,py_k≤1000), means a point with coordinate (px_k, py_k).
Output
Sample Input
4 4 3 0 2 4 6 0 2 4 6 1 1 3 3 6 6
Sample Output
8
题意:
给出一些x和y方向上的直线,然后让分别选两个会形成长方形,其中是正方形且在其内部和边界上有给出的点时叫这种正方形,问有多少个这种正方形;
思路:
把给出的点求出一个二维前缀和,然后枚举一个方向上的两个,在枚举另一个方向上的一条线,这就得到了这个正方形,然后用前缀和判断是否存在点,复杂度是O(n*n*n)数据范围给的有问题,我开大了一倍才过;
题解说枚举对角线,然后枚举坐下角,这样复杂度是O(n*n),想不通为啥是这个复杂度;
AC代码:
#pragma comment(linker, "/STACK:102400000,102400000") #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> //#include <bits/stdc++.h> #include <stack> #include <map> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++) #define mst(ss,b) memset(ss,b,sizeof(ss)); //typedef long long LL; typedef unsigned long long LL; template<class T> void read(T&num) { char CH; bool F=false; for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar()); for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar()); F && (num=-num); } int stk[70], tp; template<class T> inline void print(T p) { if(!p) { puts("0"); return; } while(p) stk[++ tp] = p%10, p/=10; while(tp) putchar(stk[tp--] + '0'); putchar('\n'); } const LL mod=1e9+7; const double PI=acos(-1.0); const int inf=1e9; const int N=1e3+20; const int maxn=2e3+20; const double eps=1e-3; int sum[maxn][maxn],su[maxn][maxn],n1,n2,n3; int x[maxn],y[maxn],vis[2*maxn],a[maxn][maxn]; int main() { mst(a,0); mst(vis,0); read(n1);read(n2);read(n3); for(int i=1;i<=n1;i++)read(y[i]),y[i]++; for(int i=1;i<=n2;i++)read(x[i]),x[i]++,vis[x[i]]=1; sort(y+1,y+n1+1);sort(x+1,x+n2+1); int fx,fy; for(int i=1;i<=n3;i++) { read(fx);read(fy); fx++;fy++; a[fx][fy]=1; } for(int i=1;i<N;i++) for(int j=1;j<N;j++) su[i][j]=su[i][j-1]+a[i][j]; for(int i=1;i<N;i++) for(int j=1;j<N;j++) sum[i][j]=sum[i-1][j]+su[i][j]; int ans=0,dx,dy,ux,uy; for(int i=1;i<=n1;i++) { for(int j=i+1;j<=n1;j++) { int l=y[j]-y[i]; for(int k=1;k<=n2;k++) { if(x[k]+l>=N||x[k]+l<=0)continue; else if(!vis[x[k]+l])continue; else { dx=x[k];dy=y[i]; ux=x[k]+l;uy=y[j]; if(sum[ux][uy]+sum[dx-1][dy-1]-sum[ux][dy-1]-sum[dx-1][uy]>0)ans++; } } } } printf("%d\n",ans); return 0; }