ural 1009. K-based Numbers

Let’s consider K-based numbers, containing exactly N digits. We define a number to be valid if itsK-based notation doesn’t contain two successive zeros. For example:
  • 1010230 is a valid 7-digit number;
  • 1000198 is not a valid number;
  • 0001235 is not a 7-digit number, it is a 4-digit number.
Given two numbers N and K, you are to calculate an amount of valid K based numbers, containing Ndigits.
You may assume that 2 ≤ K ≤ 10; N ≥ 2; N + K ≤ 18.

Input

The numbers N and K in decimal notation separated by the line break.

Output

The result in decimal notation.

Sample

inputoutput
2
10
90
Problem Source: USU Championship 1997
 
 
题意:比较简单的动态规划,题意是说一个K进制数,有N位,开头不能是0,中间不能有两个以上相邻的0
        问:求出n位的k进制数有多少个;
思路:
       建立一个二维的数组dp[2][20];令dp[1][1]=k-1;
      然后有两个递归方程;(1).dp[0][i]=dp[1][i-1];表示从最高位起的第i位是0的前i位组成的数有多少种;dp[1][i]=(dp[0][i-1]+dp[1][i-1])*(k-1);表示从最高位起的第i位是非0数的前i位组成的数有多少种;
AC代码:
 1 #include<iostream>
 2 #include<cstdio>
 3 
 4 using namespace std;
 5 
 6 int main()
 7 {
 8     int dp[2][20];
 9     int n,k;
10     cin>>n>>k;
11     int i,j;
12     for(i=0;i<=1;i++)
13         for(j=0;j<=k;j++)
14         dp[i][j]=0;
15     dp[1][1]=k-1;
16     for(i=2;i<=n;i++)
17     {
18         dp[0][i]=dp[1][i-1];
19         dp[1][i]=(k-1)*(dp[0][i-1]+dp[1][i-1]);
20     }
21     cout<<dp[0][n]+dp[1][n]<<endl;
22     return 0;
23 }
View Code

 

 

 
 
 
posted @ 2013-08-04 16:58  秋心无波  阅读(226)  评论(0编辑  收藏  举报