Magic boy Bi Luo with his excited tree (树形dp)
Bi Luo is a magic boy, he also has a migic tree, the tree has NN nodes , in each node , there is a treasure, it's value is V[i]V[i], and for each edge, there is a cost C[i]C[i], which means every time you pass the edge ii , you need to pay C[i]C[i].
You may attention that every V[i]V[i] can be taken only once, but for some C[i]C[i] , you may cost severial times.
Now, Bi Luo define ans[i]ans[i] as the most value can Bi Luo gets if Bi Luo starts at node ii.
Bi Luo is also an excited boy, now he wants to know every ans[i]ans[i], can you help him?
You may attention that every V[i]V[i] can be taken only once, but for some C[i]C[i] , you may cost severial times.
Now, Bi Luo define ans[i]ans[i] as the most value can Bi Luo gets if Bi Luo starts at node ii.
Bi Luo is also an excited boy, now he wants to know every ans[i]ans[i], can you help him?
InputFirst line is a positive integer T(T≤104)T(T≤104) , represents there are TT test cases.
Four each test:
The first line contain an integer NN(N≤105)(N≤105).
The next line contains NN integers V[i]V[i], which means the treasure’s value of node i(1≤V[i]≤104)i(1≤V[i]≤104).
For the next N−1N−1 lines, each contains three integers u,v,cu,v,c , which means node uuand node vv are connected by an edge, it's cost is c(1≤c≤104)c(1≤c≤104).
You can assume that the sum of NN will not exceed 106106.OutputFor the i-th test case , first output Case #i: in a single line , then output NNlines , for the i-th line , output ans[i]ans[i] in a single line.Sample Input
1
5
4 1 7 7 7
1 2 6
1 3 1
2 4 8
3 5 2
Sample Output
Case #1:
15
10
14
9
15
SOLUTION:
这算是一道比较难的dp了吧,
很容易想到dp i 0/1 代表只考虑i的子树后回到,不会到根节点的最大价值,
之后就要考虑此时的转移
求出dp之后,最难的步骤就是dp数组在树上换根时候的变换,感觉网上的题解写的不错
CODE:
// // Created by Running Photon // Copyright (c) 2015 Running Photon. All rights reserved. // #include <algorithm> #include <cctype> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <iomanip> #include <iostream> #include <map> #include <queue> #include <string> #include <sstream> #include <set> #include <vector> #include <stack> #define ALL(x) x.begin(), x.end() #define INS(x) inserter(x, x,begin()) #define ll long long #define CLR(x) memset(x, 0, sizeof x) using namespace std; const int inf = 0x3f3f3f3f; const int MOD = 1e9 + 7; const int maxn = 2e5 + 10; const int maxv = 1e5 + 10; const double eps = 1e-9; int pnt[maxn], nxt[maxn], val[maxv], head[maxv], cost[maxn], cnt; void add_edge(int u, int v, int value) { pnt[cnt] = v; cost[cnt] = value; nxt[cnt] = head[u]; head[u] = cnt++; } int dp[2][maxv]; void dfs1(int u, int fa) { dp[0][u] = val[u]; dp[1][u] = val[u]; for(int i = head[u]; ~i; i = nxt[i]) { int v = pnt[i]; if(v == fa) continue; dfs1(v, u); if(dp[0][v] - cost[i] * 2 > 0) { dp[0][u] += dp[0][v] - cost[i] * 2; } } for(int i = head[u]; ~i; i = nxt[i]) { int v = pnt[i]; if(v == fa) continue; if(dp[0][u] - max(0, dp[0][v] - cost[i] * 2) + (dp[1][v] - cost[i]) >= dp[1][u]) { dp[1][u] = dp[0][u] - max(0, dp[0][v] - cost[i] * 2) + (dp[1][v] - cost[i]); } } } void dfs2(int u, int fa, int Cost) { int dir = u, tmp; if(fa != -1 && dp[0][fa] - Cost * 2 > 0) { dp[0][u] += dp[0][fa] - Cost * 2; } tmp = dp[1][u] = dp[0][u]; if(fa!=-1) for(int i=1;i<=1;i++) { int v = fa; if(dp[0][u] - max(0, dp[0][v] - Cost * 2) + (dp[1][v] - Cost) >= dp[1][u]) { dir = v; swap(tmp, dp[1][u]); dp[1][u] = dp[0][u] - max(0, dp[0][v] - Cost * 2) + (dp[1][v] - Cost); } else if(dp[0][u] - max(0, dp[0][v] - Cost * 2) + (dp[1][v] - Cost) >= tmp) { tmp = dp[0][u] - max(0, dp[0][v] - Cost * 2) + (dp[1][v] - Cost); } } for(int i = head[u]; ~i; i = nxt[i]) { int v = pnt[i]; if(dp[0][u] - max(0, dp[0][v] - cost[i] * 2) + (dp[1][v] - cost[i]) >= dp[1][u]) { dir = v; swap(tmp, dp[1][u]); dp[1][u] = dp[0][u] - max(0, dp[0][v] - cost[i] * 2) + (dp[1][v] - cost[i]); } else if(dp[0][u] - max(0, dp[0][v] - cost[i] * 2) + (dp[1][v] - cost[i]) >= tmp) { tmp = dp[0][u] - max(0, dp[0][v] - cost[i] * 2) + (dp[1][v] - cost[i]); } } // printf("dp[0][%d] = %d dp[1][%d] = %d tmp = %d\n", u, dp[0][u], u, dp[1][u], tmp); int L = dp[0][u], R = dp[1][u]; for(int i = head[u]; ~i; i = nxt[i]) { int v = pnt[i]; if(v == fa) continue; if(dp[0][v] - cost[i] * 2 > 0) { dp[0][u] = L - (dp[0][v] - cost[i] * 2); } if(dir == v) { dp[1][u] = tmp; if(dp[0][v] - cost[i] * 2 > 0) dp[1][u] -= (dp[0][v] - cost[i] * 2); } else if(dp[0][v] - cost[i] * 2 > 0) { dp[1][u] = R - (dp[0][v] - cost[i] * 2); } // printf("dir = %d\n", dir); // printf("nxt%d = %d\n", v, dp[1][u]); dfs2(v, u, cost[i]); dp[0][u] = L, dp[1][u] = R; } } int main() { int T; int cas = 0; scanf("%d", &T); while(T--) { int n; printf("Case #%d:\n", ++cas); scanf("%d", &n); cnt = 0; memset(head, -1, sizeof (int) * (n + 1)); for(int i = 1; i <= n; i++) scanf("%d", val + i); for(int i = 1; i < n; i++) { int u, v, value; scanf("%d%d%d", &u, &v, &value); add_edge(u, v, value); add_edge(v, u, value); } dfs1(1, -1); dfs2(1, -1, 0); for(int i = 1; i <= n; i++) { printf("%d\n", max(dp[0][i], dp[1][i])); } } return 0; }