https://www.jianshu.com/p/ff0eb70d31ec
什么是Lift?
Lift是评估一个预测模型是否有效的一个度量;它衡量的是一个模型(或规则)对目标中“响应”的预测能力优于随机选择的倍数,以1为界线,大于1的Lift表示该模型或规则比随机选择捕捉了更多的“响应”,等于1的Lift表示该模型的表现独立于随机选择,小于1则表示该模型或规则比随机选择捕捉了更少的“响应”。维基百科中提升度被解释为“Target response divided by average response”。
信用模型中的lift
在模型评估中,我们常用到增益/提升(Gain/Lift)图来评估模型效果,其中的Lift是“运用该模型”和“未运用该模型”所得结果的比值。以信用评分卡模型的评分结果为例,我们通常会将打分后的样本按分数从低到高排序,取10或20等分(有同分数对应多条观测的情况,所以各组观测数未必完全相等),并对组内观测数与坏样本数进行统计。用评分卡模型捕捉到的坏客户的占比,可由该组坏样本数除以总的坏样本数计算得出;而不使用此评分卡,以随机选择的方法覆盖到的坏客户占比,等价于该组观测数占总观测数的比例(分子分母同时乘以样本整体的坏账率)。对两者取累计值,取其比值,则得到提升度Lift,即该评分卡抓取坏客户的能力是随机选择的多少倍。
下表是一个提升表(Lift Table)的示例:
作者:peiyang
链接:https://www.jianshu.com/p/ff0eb70d31ec
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
作者:peiyang
链接:https://www.jianshu.com/p/ff0eb70d31ec
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。