pandas 入门(2)

from pandas import Series, DataFrame, Index
import numpy as np
from numpy import nan as NA

obj = Series(range(3), index=['a', 'b', 'c'])
print(obj)
index = obj.index
print(index)
print(index[1:])
# index[1] = 'd'  index对象时不可以被修改的  为了安全和共享

index = Index(np.arange(3))
obj2 = Series([1.5, -2.6, 0], index=index)
print(obj2.index is index)
# 嵌套字典(字典的字典)
pop = {
    'nevada': {
        2001: 2.4,
        2002: 2.9
    },
    'ohio': {
        2000: 1.5,
        2001: 1.7,
        2002: 3.6
    }
}
frame3 = DataFrame(pop)
frame3.index.name = 'year'
frame3.columns.name = 'state'
print(frame3)
print('ohio' in frame3.columns)
print(2003 in frame3.index)  # index有很多的方法和属性(有时间呢,可以摸索一下)

# reindex创建适应新索引的新对象(这里我不是很懂)
obj = Series([2.3, 4.5, -23.3, 4.3], index=['d', 'b', 'a', 'c'])
print(obj)
obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])
print(obj2)  # 索引和值一一对应,根据新索引进行重排
obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'], fill_value=0)
print(obj2)  # 索引不存在,可以引入缺失值

obj3 = Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])
print(obj3)
# obj3 = obj3.reindex(range(6), method='ffill')  # 或者pad
# print(obj3)  # 向前值填充
obj3 = obj3.reindex(range(6), method='bfill')  # 或者pad
print(obj3)  # 向后值填充

# 成员资格方法
data = DataFrame({'qu1': [1, 3, 4, 3, 4], 'qu2': [2, 3, 1, 2, 3], 'qu3': [1, 5, 2, 4, 4]})
print(data)

# 处理缺失数据
string = Series(['aar', 'art', np.nan, 'avo'])
print(string)
print(string.isnull())

# 过滤掉缺失数据
data = Series([1, NA, 3.5, NA, 7])
print(data.dropna())  # 过滤掉NA
print(data.notnull())

data = DataFrame([[1, 6.5, 3], [1, NA, NA], [NA, NA, NA], [NA, 6.5, 3]])
print(data)
print(data.dropna())   # 丢弃掉含有NA的所有行
print(data.dropna(how='all'))  # 丢我掉全为NA的行
data[4] = NA
print(data)
print(data.dropna(axis=1, how='all'))   # 丢弃掉全为NA的列

df = DataFrame(np.random.randn(7, 3))
df.ix[:4, 1] = NA  # 要钱也要后
df.ix[:2, 2] = NA
print(df)
print(df.dropna(thresh=3))  # thresh对应的值是观测的数据个数

# 填充缺失数据
print(df.fillna(0))
print(df.fillna({1: 0.4}))  # 指定的列进行填充
_ = df.fillna(0, inplace=True)  # 本地填充修改, 不产生新对象
print(df)

df = DataFrame(np.random.randn(6, 3))
df.ix[2:, 1] = NA  # 要钱也要后
df.ix[4:, 2] = NA
print(df)
print(df.fillna(method='ffill'))  # 向前填充
print(df.fillna(method='ffill', limit=2))  # 填充限制

data = Series([1, NA, 3.5, NA, 7])
print(data)
print(data.fillna(data.mean()))  # 用平均值填充na值

 

posted @ 2018-08-10 00:38  Bob__Zhang  阅读(173)  评论(0编辑  收藏  举报