大模型架构之MOE
transformers库里面的modeling_mistral.py
MistralModel(
(embed_tokens): Embedding(32000, 4096)
(layers): ModuleList(
(0-1): 2 x MistralDecoderLayer(
(self_attn): MistralSdpaAttention(
(q_proj): Linear(in_features=4096, out_features=4096, bias=False)
(k_proj): Linear(in_features=4096, out_features=1024, bias=False)
(v_proj): Linear(in_features=4096, out_features=1024, bias=False)
(o_proj): Linear(in_features=4096, out_features=4096, bias=False)
(rotary_emb): MistralRotaryEmbedding()
)
(mlp): MistralMLP(
(gate_proj): Linear(in_features=4096, out_features=2, bias=False)
(up_proj): Linear(in_features=4096, out_features=2, bias=False)
(down_proj): Linear(in_features=2, out_features=4096, bias=False)
(act_fn): SiLU()
)
(input_layernorm): MistralRMSNorm()
(post_attention_layernorm): MistralRMSNorm()
)
)
(norm): MistralRMSNorm()
)
debug代码
import transformers
a=transformers.MistralModel
b=a(transformers.MistralConfig(num_hidden_layers=2,intermediate_size=2))
print(1)
import torch
a=b(torch.tensor([1,2,4]).unsqueeze(0))
print(a)
print(1)