Python--(并发编程之线程Part2)


GIL只能保证垃圾回收机制的安全,进程中的数据安全还是需要自定义锁

线程执行代码首先要抢到GIL全局锁,假设线程X首先抢到,以为要抢到自定义锁要执行代码,所以这个线程在执行代码的时候就很容抢到了自定义锁,当线程在执行代码的的时候遇到IO操作就会被CPU检测到,并且夺回CPU的执行权限,这个线程就释放了GIL全局锁,其他线程就开始抢GIL全局锁,但是即便是抢到了GIL全局锁,但是自定义的锁还在那个线程那里,所以那个线程做完IO操作,其他线程还是要把GIL全局锁还回去,他才能执行剩下的代码释放自定义锁,于是这个线程又拿到了GIL全局锁,执行完代码后又释放了GIL锁,在释放自定义锁的时候又加入了抢GIL锁的大军中.....

这样子就保证了进程中数据的安装

1. GIL全局解释器锁(******)
    2. 死锁与递归锁
    3. 信号量
    4. Event事件
5. 线程queue
一、GIL全局锁
运行test.py的流程:
a、将python解释器的代码从硬盘读入内存
b、将test.py的代码从硬盘读入内存  (一个进程内装有两份代码)
c、将test.py中的代码像字符串一样读入python解释器中解析执行
1 、GIL:全局解释器锁 (CPython解释器的特性)
In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple
native threads from executing Python bytecodes at once. This lock is necessary mainly
because CPython’s memory management (垃圾回收机制,由解释器定期执行)is not thread-safe(如果不是串行改数据,当x=10的过程中内存中产生一个10,还没来的及绑定x,就有可能被垃圾回收机制回收).However, since the GIL exists, other features have grown to depend on the guarantees that it enforces.)
GIL本质就是一把夹在解释器身上的互斥锁(执行权限)。同一个进程内的所有线程都需要先抢到GIL锁,才能执行解释器代码

2、GIL的优缺点:
优点:保证Cpython解释器内存管理的线程安全
缺点:在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,也就说Cpython解释器的多线程无法实现并行无法利用多核优势

注意:
a、GIL不能并行,但有可能并发,不一定为串行。因为串行是一个任务完完全全执行完毕后才进行下一个;而cpython中,一个线程在io时,被CPU释放时,会被强行取消GIL的使用权限
b、多核(多CPU)的优势是提升运算效率
c、计算密集型--》使用多进程,以用上多核
d、IO密集型--》使用多线程
二、Cpython解释器并发效率验证
1、计算密集型应该使用多进程
from multiprocessing import Process
from threading import Thread

import time
# import os
# print(os.cpu_count())  #查看cpu个数

def task1():
    res=0
    for i in range(1,100000000):
        res+=i

def task2():
    res=0
    for i in range(1,100000000):
        res+=i

def task3():
    res=0
    for i in range(1,100000000):
        res+=i

def task4():
    res=0
    for i in range(1,100000000):
        res+=i

if __name__ == '__main__':
    # p1=Process(target=task1)
    # p2=Process(target=task2)
    # p3=Process(target=task3)
    # p4=Process(target=task4)

    p1=Thread(target=task1)
    p2=Thread(target=task2)
    p3=Thread(target=task3)
    p4=Thread(target=task4)
    start_time=time.time()
    p1.start()
    p2.start()
    p3.start()
    p4.start()
    p1.join()
    p2.join()
    p3.join()
    p4.join()
    stop_time=time.time()
    print(stop_time - start_time)

2、IO密集型应该使用多线程
from multiprocessing import Process
from threading import Thread

import time

def task1():
    time.sleep(3)

def task2():
    time.sleep(3)

def task3():
    time.sleep(3)

def task4():
    time.sleep(3)

if __name__ == '__main__':
    # p1=Process(target=task1)
    # p2=Process(target=task2)
    # p3=Process(target=task3)
    # p4=Process(target=task4)

    # p1=Thread(target=task1)
    # p2=Thread(target=task2)
    # p3=Thread(target=task3)
    # p4=Thread(target=task4)
    # start_time=time.time()
    # p1.start()
    # p2.start()
    # p3.start()
    # p4.start()
    # p1.join()
    # p2.join()
    # p3.join()
    # p4.join()
    # stop_time=time.time()
    # print(stop_time - start_time) #3.138049364089966

    p_l=[]
    start_time=time.time()

    for i in range(500):
        p=Thread(target=task1)
        p_l.append(p)
        p.start()

    for p in p_l:
        p.join()

print(time.time() - start_time)
三、线程互斥锁与GIL对比
GIL能保护解释器级别代码(和垃圾回收机制有关)但保护不了其他共享数据(比如自己的代码)。所以在程序中对于需要保护的数据要自行加锁

from threading import Thread,Lock
import time

mutex=Lock()
count=0

def task():
    global count
    mutex.acquire()
    temp=count
    time.sleep(0.1)
    count=temp+1
    mutex.release()

if __name__ == '__main__':
    t_l=[]
    for i in range(2):
        t=Thread(target=task)
        t_l.append(t)
        t.start()
    for t in t_l:
        t.join()

    print('',count)

四、基于多线程实现并发的套接字通信
服务端:
from socket import *
from threading import Thread
from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor

tpool=ThreadPoolExecutor(3)  #进程和线程都不能无限多,导入模块来限制进程和线程池重点数目;进程线程池中封装了Process、Thread模块的功能

def communicate(conn,client_addr):
    while True:  # 通讯循环
        try:
            data = conn.recv(1024)
            if not data: break
            conn.send(data.upper())
        except ConnectionResetError:
            break
    conn.close()

def server():
    server=socket(AF_INET,SOCK_STREAM)
    server.bind(('127.0.0.1',8080))
    server.listen(5)

    while True: # 链接循环
        conn,client_addr=server.accept()
        print(client_addr)
        # t=Thread(target=communicate,args=(conn,client_addr))
        # t.start()
        tpool.submit(communicate,conn,client_addr)

    server.close()

if __name__ == '__main__':
    server()

客户端:
from socket import *

client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080))

while True:
    msg=input('>>>: ').strip()
    if not msg:continue
    client.send(msg.encode('utf-8'))
    data=client.recv(1024)
    print(data.decode('utf-8'))

client.close()
六、死锁与递归锁
进程也有死锁与递归锁,在进程那里忘记说了,放到这里一切说了额
所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁
from threading import Thread,Lockimport time
mutexA=Lock()
mutexB=Lock()
class MyThread(Thread):
    def run(self):
        self.func1()
        self.func2()
    def func1(self):
        mutexA.acquire()
        print('\033[41m%s 拿到A锁\033[0m' %self.name)

        mutexB.acquire()
        print('\033[42m%s 拿到B锁\033[0m' %self.name)
        mutexB.release()

        mutexA.release()

    def func2(self):
        mutexB.acquire()
        print('\033[43m%s 拿到B锁\033[0m' %self.name)
        time.sleep(2)

        mutexA.acquire()
        print('\033[44m%s 拿到A锁\033[0m' %self.name)
        mutexA.release()

        mutexB.release()
if __name__ == '__main__':
    for i in range(10):
        t=MyThread()
        t.start()
'''
Thread-1 拿到A锁
Thread-1 拿到B锁
Thread-1 拿到B锁
Thread-2 拿到A锁
然后就卡住,死锁了'''

解决方法,递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。
这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁:
mutexA=mutexB=threading.RLock() #一个线程拿到锁,counter加1,该线程内又碰到加锁的情况,则counter继续加1,这期间所有其他线程都只能等待,等待该线程释放所有锁,即counter递减到0为止

七、信号量
同进程的一样
Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;
调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。
实例:(同时只有5个线程可以获得semaphore,即可以限制最大连接数为5):
from threading import Thread,Semaphoreimport threadingimport time
# def func():
#     if sm.acquire():
#         print (threading.currentThread().getName() + ' get semaphore')
#         time.sleep(2)
#         sm.release()
def func():
    sm.acquire()
    print('%s get sm' %threading.current_thread().getName())
    time.sleep(3)
    sm.release()if __name__ == '__main__':
    sm=Semaphore(5)
    for i in range(23):
        t=Thread(target=func)
        t.start()

与进程池是完全不同的概念,进程池Pool(4),最大只能产生4个进程,而且从头到尾都只是这四个进程,不会产生新的,而信号量是产生一堆线程/进程
八、Event事件
同进程的一样
线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其 他线程需要通过判断某个线程的状态来确定自己下一步的操作,这时线程同步问题就会变得非常棘手。为了解决这些问题,我们需要使用threading库中的Event对象。 对象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行
九、线程queue
queue队列 :使用import queue,用法与进程Queue一样
queue is especially useful in threaded programming when information must be exchanged safely between multiple threads.
class queue.Queue(maxsize=0) #先进先出


import queue

q=queue.Queue()
q.put('first')
q.put('second')
q.put('third')
print(q.get())print(q.get())print(q.get())'''
结果(先进先出):
first
second
third'''

class queue.LifoQueue(maxsize=0) #last in fisrt out 
import queue

q=queue.LifoQueue()
q.put('first')
q.put('second')
q.put('third')
print(q.get())print(q.get())print(q.get())'''
结果(后进先出):
third
second
first'''

class queue.PriorityQueue(maxsize=0) #存储数据时可设置优先级的队列

import queue

q=queue.PriorityQueue()#put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高
q.put((20,'a'))
q.put((10,'b'))
q.put((30,'c'))
print(q.get())print(q.get())print(q.get())'''
结果(数字越小优先级越高,优先级高的优先出队):
(10, 'b')
(20, 'a')
(30, 'c')'''

 

posted @ 2018-09-07 16:17  zhaijihai  阅读(165)  评论(0编辑  收藏  举报