celery

1.什么是celery(任务队列)?

任务队列是一种在线程或机器间分发任务的机制。

消息队列的输入是工作的一个单元,称为任务,独立的职程(Worker)进程持续监视队列中是否有需要处理的新任务。

Celery 用消息通信,通常使用中间人(Broker)在客户端和职程间斡旋。这个过程从客户端向队列添加消息开始,之后中间人把消息派送给职程。

Celery 系统可包含多个职程和中间人,以此获得高可用性和横向扩展能力。

Celery 是用 Python 编写的,但协议可以用任何语言实现。

在python中定义Celery的时候,我们要引入Broker,中文翻译过来就是"中间人/经纪人"的意思,在这里Broker起到一个中间人的角色,在工头提出任务的时候,把所有的任务放到Broker里面,在Broker的另一头,一群码农等着取出一个个任务准备着手做.

这种模式注定了整个系统会是个开环系统,工头对于码农们把任务做的怎样是不知情的,所以我们要引入Backend来保存每次任务的结果。这个Backend有点像我们的Broker,也是存储信息用的,只不过这里存的是那些任务的返回结果。我们可以选择只让错误执行的任务返回结果到Backend,这样我们取回结果,便可以知道有多少任务执行失败了。

Celery 介绍

在Celery中几个基本的概念,需要先了解下,不然不知道为什么要安装下面的东西。概念:Broker,Backend。

Broker:

  broker是一个消息传输的中间件,可以理解为一个邮箱。每当应用程序调用celery的异步任务的时候,会向broker传递消息,而后celery的worker将会取到消息,进行程序执行,好吧,这个邮箱可以看成是一个消息队列,其中Broker的中文意思是经纪人,其实就是一开始说的消息队列,用来发送和接受信息。这个broker有几个方案可供选择:RabbitMQ(消息队列),Redis(缓存数据库),数据库(不推荐),等等

什么是backend?

  通常程序发送的消息,发完就完了,可能都不知道对方什么时候接受了,为此,celery实现了一个backend,用于存储这些消息以及celery执行的一些消息和结果,Backend是在Celery的配置中的一个配置项CELERY_RESULT_BACKEND,作用是保存结果和状态,如果你需要跟踪任务的状态,那么需要设置这一项,可以是Database backend,也可以是Cache backend.

对于brokers,官方推荐是rabbitmq和redis,至于backend,就是数据库,为了简单可以都使用redis。

2.怎么使用?

2.1使用场景

异步任务:将耗时操作任务提交给Celery去异步执行,比如发送短信/邮件、消息推送、音视频处理等等

定时任务:定时执行某件事情,比如每天数据统计

2.2 Celery安装配置

pip install celery

消息中间件:RabbitMQ/Redis

app=Celery('任务名',backend='xxx',broker='xxx')

2.3 Celery执行异步任务

创建项目celerytest

创建py文件:celery_app_task.py

import celery
import time
# broker='redis://127.0.0.1:6379/2' 不加密码
backend='redis://:123456@127.0.0.1:6379/1'
broker='redis://:123456@127.0.0.1:6379/2'
cel=celery.Celery('test',backend=backend,broker=broker)
@cel.task
def add(x,y):
    return x+y

创建py文件:add_task.py,添加任务

from celery_app_task import add
result = add.delay(4,5)
print(result.id)

创建py文件:run.py,执行任务,或者使用命令执行:celery worker -A celery_app_task -l info

注:windows下:celery worker -A celery_app_task -l info -P eventlet

from celery_app_task import cel
if __name__ == '__main__':
    cel.worker_main()
    # cel.worker_main(argv=['--loglevel=info')

创建py文件:result.py,查看任务执行结果

from celery.result import AsyncResult
from celery_app_task import cel

async = AsyncResult(id="e919d97d-2938-4d0f-9265-fd8237dc2aa3", app=cel)

if async.successful():
    result = async.get()
    print(result)
    # result.forget() # 将结果删除
elif async.failed():
    print('执行失败')
elif async.status == 'PENDING':
    print('任务等待中被执行')
elif async.status == 'RETRY':
    print('任务异常后正在重试')
elif async.status == 'STARTED':
    print('任务已经开始被执行')

执行 add_task.py,添加任务,并获取任务ID

执行 run.py ,或者执行命令:celery worker -A celery_app_task -l info

执行 result.py,检查任务状态并获取结果

3.多任务结构

pro_cel
   ├── celery_task# celery相关文件夹
   │   ├── celery.py   # celery连接和配置相关文件,必须叫这个名字
   │   └── tasks1.py    # 所有任务函数
    └── tasks2.py    # 所有任务函数
   ├── check_result.py # 检查结果
   └── send_task.py    # 触发任务

celery.py

from celery import Celery

cel = Celery('celery_demo',
            broker='redis://127.0.0.1:6379/1',
            backend='redis://127.0.0.1:6379/2',
            # 包含以下两个任务文件,去相应的py文件中找任务,对多个任务做分类
            include=['celery_task.tasks1',
                     'celery_task.tasks2'
                    ])

# 时区
cel.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
cel.conf.enable_utc = False

tasks1.py

import time
from celery_task.celery import cel

@cel.task
def test_celery(res):
   time.sleep(5)
   return "test_celery任务结果:%s"%res

tasks2.py

import time
from celery_task.celery import cel
@cel.task
def test_celery2(res):
   time.sleep(5)
   return "test_celery2任务结果:%s"%res

check_result.py

from celery.result import AsyncResult
from celery_task.celery import cel

async = AsyncResult(id="08eb2778-24e1-44e4-a54b-56990b3519ef", app=cel)

if async.successful():
   result = async.get()
   print(result)
   # result.forget() # 将结果删除,执行完成,结果不会自动删除
   # async.revoke(terminate=True) # 无论现在是什么时候,都要终止
   # async.revoke(terminate=False) # 如果任务还没有开始执行呢,那么就可以终止。
elif async.failed():
   print('执行失败')
elif async.status == 'PENDING':
   print('任务等待中被执行')
elif async.status == 'RETRY':
   print('任务异常后正在重试')
elif async.status == 'STARTED':
   print('任务已经开始被执行')

send_task.py

from celery_task.tasks1 import test_celery
from celery_task.tasks2 import test_celery2

# 立即告知celery去执行test_celery任务,并传入一个参数
result = test_celery.delay('第一个的执行')
print(result.id)
result = test_celery2.delay('第二个的执行')
print(result.id)

添加任务(执行send_task.py),开启work:celery worker -A celery_task -l info -P eventlet,检查任务执行结果(执行check_result.py)

4.Celery执行定时任务

设定时间让celery执行一个任务

add_task.py

from celery_app_task import add
from datetime import datetime

# 方式一
# v1 = datetime(2019, 2, 13, 18, 19, 56)
# print(v1)
# v2 = datetime.utcfromtimestamp(v1.timestamp())
# print(v2)
# result = add.apply_async(args=[1, 3], eta=v2)
# print(result.id)

# 方式二
ctime = datetime.now()
# 默认用utc时间
utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
from datetime import timedelta
time_delay = timedelta(seconds=10)
task_time = utc_ctime + time_delay

# 使用apply_async并设定时间
result = add.apply_async(args=[4, 3], eta=task_time)
print(result.id)

类似于contab的定时任务

多任务结构中celery.py修改如下

from datetime import timedelta
from celery import Celery
from celery.schedules import crontab

cel = Celery('tasks', broker='redis://127.0.0.1:6379/1', backend='redis://127.0.0.1:6379/2', include=[
   'celery_task.tasks1',
   'celery_task.tasks2',
])
cel.conf.timezone = 'Asia/Shanghai'
cel.conf.enable_utc = False

cel.conf.beat_schedule = {
   # 名字随意命名
   'add-every-10-seconds': {
       # 执行tasks1下的test_celery函数
       'task': 'celery_task.tasks1.test_celery',
       # 每隔2秒执行一次
       # 'schedule': 1.0,
       # 'schedule': crontab(minute="*/1"),
       'schedule': timedelta(seconds=2),
       # 传递参数
       'args': ('test',)
  },
   # 'add-every-12-seconds': {
   #     'task': 'celery_task.tasks1.test_celery',
   #     每年4月11号,8点42分执行
   #     'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4),
   #     'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4),
   #     'args': (16, 16)
   # },
}

启动一个beat:celery beat -A celery_task -l info

启动work执行:celery worker -A celery_task -l info -P eventlet

5.Django中使用Celery

在项目目录下创建celeryconfig.py

import djcelery
djcelery.setup_loader()
CELERY_IMPORTS=(
   'app01.tasks',
)
#有些情况可以防止死锁
CELERYD_FORCE_EXECV=True
# 设置并发worker数量
CELERYD_CONCURRENCY=4
#允许重试
CELERY_ACKS_LATE=True
# 每个worker最多执行100个任务被销毁,可以防止内存泄漏
CELERYD_MAX_TASKS_PER_CHILD=100
# 超时时间
CELERYD_TASK_TIME_LIMIT=12*30

在app01目录下创建tasks.py

from celery import task
@task
def add(a,b):
   with open('a.text', 'a', encoding='utf-8') as f:
       f.write('a')
   print(a+b)

视图函数views.py

from django.shortcuts import render,HttpResponse
from app01.tasks import add
from datetime import datetime
def test(request):
   # result=add.delay(2,3)
   ctime = datetime.now()
   # 默认用utc时间
   utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
   from datetime import timedelta
   time_delay = timedelta(seconds=5)
   task_time = utc_ctime + time_delay
   result = add.apply_async(args=[4, 3], eta=task_time)
   print(result.id)
   return HttpResponse('ok')

settings.py


INSTALLED_APPS = [
  ...
   'djcelery',
   'app01'
]

...

from djagocele import celeryconfig
BROKER_BACKEND='redis'
BOOKER_URL='redis://127.0.0.1:6379/1'
CELERY_RESULT_BACKEND='redis://127.0.0.1:6379/2'

 

 

 

 

posted @ 2019-02-14 14:35  zhaijihai  阅读(450)  评论(1编辑  收藏  举报