Paper Reading Note | Deep Learning for Image Super-resolution: A Survey

一篇深度学习图像超分辨率重建综述,积累一下比较漂亮的句子

Abstract

1 Introduction

With the rapid development of deep learning techniques in recent years, deep learning based SR models have been actively explored and often achieve the state-of-the-art performance on various benchmarks of SR.

2 Problem Setting and Terminology

Although the degradation process is unknown and can be affected by various factors (e.g., compression artifacts, anisotropic degradations, sensor noise and speckle noise),researchers are trying to model the degradation mapping. Most works directly model the degradation as a single downsampling operation, as follows:
压缩假象、各向异性退化、传感器噪声、斑点噪声

高分辨率影像到低分辨率影像通过降采样操作完成,下面涉及机器学习的一些概念了:

2.2 Datasets for Super-resolution

训练数据集的问题

2.3 Image Quality Assessment

重建后的影像质量评估问题

2.3.1 Peak Signal-to-Noise Ratio

峰值信噪比

2.3.2 Structural Similarity

2.3.3 Mean Opinion Score

2.3.4 Learning-based Perceptual Quality

2.3.5 Task-based Evaluation

2.3.6 Other IQA Methods

2.4 Operating Channels

针对哪些波段进行重建的问题

2.5 Super-resolution Challenges

两个挑战,NTIRE Challenge.& PIRM Challenge.

3 SUPERVISED SUPER-RESOLUTION

4 UNSUPERVISED SUPER-RESOLUTION

5 DOMAIN-SPECIFIC APPLICATIONS

6 CONCLUSION AND FUTURE DIRECTIONS

看完再记录……

[1] WANG Z, CHEN J, HOI S C H. Deep Learning for Image Super-Resolution: A Survey [J]. IEEE Trans Pattern Anal Mach Intell, 2021, 43(10): 3365-87.

posted @   zgwen  阅读(18)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
点击右上角即可分享
微信分享提示