最短路径算法
Dijk1stra
算法
图基础知识
Dijkstra
基础知识
Dijkstra
算法从指定的节点(源节点)出发,寻找它与图中所有其它节点之间的最短路径。Dijkstra
算法会记录当前已知的最短路径,并在寻找到更短的路径时更新。- 一旦找到源节点与其他节点之间的最短路径,那个节点会被标记为“已访问”并添加到路径中。
- 重复寻找过程,直到图中所有节点都已经添加到路径中。这样,就可以得到从源节点出发访问所有其他节点的最短路径方案。
Dijkstra 只能用在权重为正的图中,因为计算过程中需要将边的权重相加来寻找最短路径。
算法示例
// 邻接矩阵数组:w[a][b] = c 代表从 a 到 b 有权重为 c 的边
// int[][] w = new int[N][N];
// dist[x] = y 代表从「源点/起点」到 x 的最短距离为 y
// int[] dist = new int[N];
// 记录哪些点已经被更新过
// boolean[] vis = new boolean[N];
void dijkstra() {
// 起始先将所有的点标记为「未更新」和「距离为正无穷」
Arrays.fill(vis, false);
Arrays.fill(dist, INF);
// 只有起点最短距离为 0
dist[k] = 0;
// 迭代 n 次
for (int p = 1; p <= n; p++) {
// 每次找到「最短距离最小」且「未被更新」的点 t
int t = -1;
for (int i = 1; i <= n; i++) {
if (!vis[i] && (t == -1 || dist[i] < dist[t])) t = i;
}
// 标记点 t 为已更新
vis[t] = true;
// 用点 t 的「最小距离」更新其他点
for (int i = 1; i <= n; i++) {
dist[i] = Math.min(dist[i], dist[t] + w[t][i]);
}
}
}
- 时间复杂度:
O(n^2)
,空间复杂度:O(n^2)
Floyd
算法
- 核心思想是,在两个顶点之间插入一个或一个以上的中转点,比较经过与不经过中转点的距离哪个更短
void floyd() {
// floyd 基本流程为三层循环:
// 枚举中转点 - 枚举起点 - 枚举终点 - 松弛操作
for (int p = 1; p <= n; p++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
w[i][j] = Math.min(w[i][j], w[i][p] + w[p][j]);
}
}
}
}
- 时间复杂度:
O(n^3)
,空间复杂度:O(n^2)
Leetcode
743. 网络延迟时间
有
n
个网络节点,标记为1
到n
给你一个列表
times
,表示信号经过 有向 边的传递时间。times[i] = (ui, vi, wi)
,其中ui
是源节点,vi
是目标节点,wi
是一个信号从源节点传递到目标节点的时间现在,从某个节点
K
发出一个信号。需要多久才能使所有节点都收到信号?如果不能使所有节点收到信号,返回-1
1 <= k <= n <= 100
1 <= times.length <= 6000
times[i].length == 3
1 <= ui, vi <= n
ui != vi
0 <= wi <= 100
- 所有
(ui, vi)
对都 互不相同(即,不含重复边)
class Solution {
int N = 110, M = 6010;
// 邻接矩阵数组:w[a][b] = c 代表从 a 到 b 有权重为 c 的边
int[][] w = new int[N][N];
// dist[x] = y 代表从「源点/起点」到 x 的最短距离为 y
int[] dist = new int[N];
// 记录哪些点已经被更新过
boolean[] vis = new boolean[N];
int INF = 0x3f3f3f3f;
int n, k;
public int networkDelayTime(int[][] ts, int _n, int _k) {
n = _n; k = _k;
// 初始化邻接矩阵
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
w[i][j] = w[j][i] = i == j ? 0 : INF;
}
}
// 存图
for (int[] t : ts) {
int u = t[0], v = t[1], c = t[2];
w[u][v] = c;
}
// 最短路
dijkstra();
// 遍历答案
int ans = 0;
for (int i = 1; i <= n; i++) {
ans = Math.max(ans, dist[i]);
}
return ans > INF / 2 ? -1 : ans;
}
void dijkstra() {
// 起始先将所有的点标记为「未更新」和「距离为正无穷」
Arrays.fill(vis, false);
Arrays.fill(dist, INF);
// 只有起点最短距离为 0
dist[k] = 0;
// 迭代 n 次
for (int p = 1; p <= n; p++) {
// 每次找到「最短距离最小」且「未被更新」的点 t
int t = -1;
for (int i = 1; i <= n; i++) {
if (!vis[i] && (t == -1 || dist[i] < dist[t])) t = i;
}
// 标记点 t 为已更新
vis[t] = true;
// 用点 t 的「最小距离」更新其他点
for (int i = 1; i <= n; i++) {
dist[i] = Math.min(dist[i], dist[t] + w[t][i]);
}
}
}
}
作者:宫水三叶
链接:https://leetcode.cn/problems/network-delay-time/solutions/910056/gong-shui-san-xie-yi-ti-wu-jie-wu-chong-oghpz/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。