Prometheus(普罗米修斯)——适合k8s和docker的监控系统

Prometheus(普罗米修斯)是一套开源的监控&报警&时间序列数据库的组合.由SoundCloud公司开发。

 

Prometheus基本原理是通过HTTP协议周期性抓取被监控组件的状态,这样做的好处是任意组件只要提供HTTP接口就可以接入监控系统,不需要任何SDK或者其他的集成过程。这样做非常适合虚拟化环境比如VM或者Docker 。

 

Prometheus应该是为数不多的适合Docker、Mesos、Kubernetes环境的监控系统之一。近几年随着k8s的流行,prometheus成为了一个越来越流行的监控工具。

 

而且Prometheus是开源的,真是我等伸手党的福音。

 

架构

 

 

Prometheus可以做什么

 

在业务层用作埋点系统 Prometheus支持各个主流开发语言(Go,java,python,ruby官方提供客户端,其他语言有第三方开源客户端)。我们可以通过客户端方面的对核心业务进行埋点。如下单流程、添加购物车流程。在应用层用作应用监控系统 一些主流应用可以通过官方或第三方的导出器,来对这些应用做核心指标的收集。如redis,mysql。在系统层用作系统监控 除了常用软件, prometheus也有相关系统层和网络层exporter,用以监控服务器或网络。集成其他的监控 prometheus还可以通过各种exporte,集成其他的监控系统,收集监控数据,如AWS CloudWatch,JMX,Pingdom等等。不要用Prometheus做什么

 

prometheus也提供了Grok exporter等工具可以用来读取日志,但是prometheus是监控系统,不是日志系统。应用的日志还是应该走ELK等工具栈。

 

grafana

 

一般配合grafana做前端展示

 

 

Kubernetes使用prometheus+grafana做一个简单的监控方案

本文介绍在k8s集群中使用node-exporter、prometheus、grafana对集群进行监控。
其实现原理有点类似ELK、EFK组合。node-exporter组件负责收集节点上的metrics监控数据,并将数据推送给prometheus, prometheus负责存储这些数据,grafana将这些数据通过网页以图形的形式展现给用户。

在开始之前有必要了解下Prometheus是什么?
Prometheus (中文名:普罗米修斯)是由 SoundCloud 开发的开源监控报警系统和时序列数据库(TSDB).自2012年起,许多公司及组织已经采用 Prometheus,并且该项目有着非常活跃的开发者和用户社区.现在已经成为一个独立的开源项目。Prometheus 在2016加入 CNCF ( Cloud Native Computing Foundation ), 作为在 kubernetes 之后的第二个由基金会主持的项目。 Prometheus 的实现参考了Google内部的监控实现,与源自Google的Kubernetes结合起来非常合适。另外相比influxdb的方案,性能更加突出,而且还内置了报警功能。它针对大规模的集群环境设计了拉取式的数据采集方式,只需要在应用里面实现一个metrics接口,然后把这个接口告诉Prometheus就可以完成数据采集了,下图为prometheus的架构图。

 

Prometheus的特点:
1、多维数据模型(时序列数据由metric名和一组key/value组成)
2、在多维度上灵活的查询语言(PromQl)
3、不依赖分布式存储,单主节点工作.
4、通过基于HTTP的pull方式采集时序数据
5、可以通过中间网关进行时序列数据推送(pushing)
6、目标服务器可以通过发现服务或者静态配置实现
7、多种可视化和仪表盘支持

prometheus 相关组件,Prometheus生态系统由多个组件组成,其中许多是可选的:
1、Prometheus 主服务,用来抓取和存储时序数据
2、client library 用来构造应用或 exporter 代码 (go,java,python,ruby)
3、push 网关可用来支持短连接任务
4、可视化的dashboard (两种选择,promdash 和 grafana.目前主流选择是 grafana.)
4、一些特殊需求的数据出口(用于HAProxy, StatsD, Graphite等服务)
5、实验性的报警管理端(alartmanager,单独进行报警汇总,分发,屏蔽等 )

promethues 的各个组件基本都是用 golang 编写,对编译和部署十分友好.并且没有特殊依赖.基本都是独立工作。

部署

现在我们正式开始部署工作。这里假设你已经为你的K8S集群部署过kube-dns或者coredns了。
一、环境介绍
操作系统环境:centos linux 7.5 64bit
K8S软件版本: 1.12.3
Master节点IP: 10.40.0.151/24

Node01节点IP: 10.40.0.152/24

Node02节点IP: 10.40.0.153/24

 

二、采用daemonset方式部署node-exporter组件

复制代码
cat node-exporter.yaml

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
  name: node-exporter
  namespace: kube-system
  labels:
    k8s-app: node-exporter
spec:
  template:
    metadata:
      labels:
        k8s-app: node-exporter
    spec:
      containers:
      - image: prom/node-exporter
        name: node-exporter
        ports:
        - containerPort: 9100
          protocol: TCP
          name: http
---
apiVersion: v1
kind: Service
metadata:
  labels:
    k8s-app: node-exporter
  name: node-exporter
  namespace: kube-system
spec:
  ports:
  - name: http
    port: 9100
    nodePort: 31672
    protocol: TCP
  type: NodePort
  selector:
    k8s-app: node-exporter
复制代码

三、部署prometheus组件

1、rbac文件

复制代码
cat rbac-setup.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: prometheus
rules:
- apiGroups: [""]
  resources:
  - nodes
  - nodes/proxy
  - services
  - endpoints
  - pods
  verbs: ["get", "list", "watch"]
- apiGroups:
  - extensions
  resources:
  - ingresses
  verbs: ["get", "list", "watch"]
- nonResourceURLs: ["/metrics"]
  verbs: ["get"]
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: prometheus
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: prometheus
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: prometheus
subjects:
- kind: ServiceAccount
  name: prometheus
  namespace: kube-system
复制代码

 

2、以configmap的形式管理prometheus组件的配置文件

复制代码
cat configmap.yaml 

apiVersion: v1
kind: ConfigMap
metadata:
  name: prometheus-config
  namespace: kube-system
data:
  prometheus.yml: |
    global:
      scrape_interval:     15s
      evaluation_interval: 15s
    scrape_configs:

    - job_name: 'kubernetes-apiservers'
      kubernetes_sd_configs:
      - role: endpoints
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
        action: keep
        regex: default;kubernetes;https

    - job_name: 'kubernetes-nodes'
      kubernetes_sd_configs:
      - role: node
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
      - target_label: __address__
        replacement: kubernetes.default.svc:443
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: /api/v1/nodes/${1}/proxy/metrics

    - job_name: 'kubernetes-cadvisor'
      kubernetes_sd_configs:
      - role: node
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
      - target_label: __address__
        replacement: kubernetes.default.svc:443
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor

    - job_name: 'kubernetes-service-endpoints'
      kubernetes_sd_configs:
      - role: endpoints
      relabel_configs:
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
        action: replace
        target_label: __scheme__
        regex: (https?)
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
        action: replace
        target_label: __metrics_path__
        regex: (.+)
      - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
        action: replace
        target_label: __address__
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
      - action: labelmap
        regex: __meta_kubernetes_service_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        action: replace
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_service_name]
        action: replace
        target_label: kubernetes_name

    - job_name: 'kubernetes-services'
      kubernetes_sd_configs:
      - role: service
      metrics_path: /probe
      params:
        module: [http_2xx]
      relabel_configs:
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_probe]
        action: keep
        regex: true
      - source_labels: [__address__]
        target_label: __param_target
      - target_label: __address__
        replacement: blackbox-exporter.example.com:9115
      - source_labels: [__param_target]
        target_label: instance
      - action: labelmap
        regex: __meta_kubernetes_service_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_service_name]
        target_label: kubernetes_name

    - job_name: 'kubernetes-ingresses'
      kubernetes_sd_configs:
      - role: ingress
      relabel_configs:
      - source_labels: [__meta_kubernetes_ingress_annotation_prometheus_io_probe]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_ingress_scheme,__address__,__meta_kubernetes_ingress_path]
        regex: (.+);(.+);(.+)
        replacement: ${1}://${2}${3}
        target_label: __param_target
      - target_label: __address__
        replacement: blackbox-exporter.example.com:9115
      - source_labels: [__param_target]
        target_label: instance
      - action: labelmap
        regex: __meta_kubernetes_ingress_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_ingress_name]
        target_label: kubernetes_name

    - job_name: 'kubernetes-pods'
      kubernetes_sd_configs:
      - role: pod
      relabel_configs:
      - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
        action: replace
        target_label: __metrics_path__
        regex: (.+)
      - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
        action: replace
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
        target_label: __address__
      - action: labelmap
        regex: __meta_kubernetes_pod_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        action: replace
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_pod_name]
        action: replace
        target_label: kubernetes_pod_name
复制代码

 

3、Prometheus deployment 文件

复制代码
cat prometheus.yaml 

apiVersion: apps/v1beta2
kind: Deployment
metadata:
  labels:
    name: prometheus-deployment
  name: prometheus
  namespace: kube-system
spec:
  replicas: 1
  selector:
    matchLabels:
      app: prometheus
  template:
    metadata:
      labels:
        app: prometheus
    spec:
      containers:
      - image: prom/prometheus:v2.0.0
        name: prometheus
        command:
        - "/bin/prometheus"
        args:
        - "--config.file=/etc/prometheus/prometheus.yml"
        - "--storage.tsdb.path=/prometheus"
        - "--storage.tsdb.retention=24h"
        ports:
        - containerPort: 9090
          protocol: TCP
        volumeMounts:
        - mountPath: "/prometheus"
          name: data
        - mountPath: "/etc/prometheus"
          name: config-volume
        resources:
          requests:
            cpu: 100m
            memory: 100Mi
          limits:
            cpu: 500m
            memory: 2500Mi
      serviceAccountName: prometheus    
      volumes:
      - name: data
        emptyDir: {}
      - name: config-volume
        configMap:
          name: prometheus-config      
---
kind: Service
apiVersion: v1
metadata:
  labels:
    app: prometheus
  name: prometheus
  namespace: kube-system
spec:
  type: NodePort
  ports:
  - port: 9090
    targetPort: 9090
    nodePort: 30003
  selector:
    app: prometheus
复制代码

 

4、通过上述yaml文件创建相应的对象

kubectl create -f node-exporter.yaml
kubectl create -f rbac-setup.yaml
kubectl create -f configmap.yaml
kubectl create -f promethues.yaml

 

5、查看相关pod和service

复制代码
# kubectl get pods -n kube-system
NAME                                   READY   STATUS    RESTARTS   AGE
coredns-779dfc4d59-rtpmk               1/1     Running   0          48s
kubernetes-dashboard-b54f75c69-tnn4h   1/1     Running   0          90m
node-exporter-sflqg                    1/1     Running   0          9m44s
node-exporter-xfsf8                    1/1     Running   0          9m44s
prometheus-58dc44f44c-z86rv            1/1     Running   0          8m44s
复制代码
# kubectl get svc -n kube-system
NAME                   TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)          AGE
kube-dns               ClusterIP   10.250.0.2     <none>        53/UDP,53/TCP    117s
kubernetes-dashboard   NodePort    10.250.1.89    <none>        443:38443/TCP    102m
node-exporter          NodePort    10.250.0.165   <none>        9100:31672/TCP   10m
prometheus             NodePort    10.250.0.53    <none>        9090:30003/TCP   9m53s

 

6、Node-exporter对应的nodeport端口为31672,通过访问http://10.40.0.152:31672/metrics 可以看到对应的metrics

 

7、prometheus对应的nodeport端口为30003,通过访问http://10.40.0.152:30003/targets 可以看到prometheus已经成功连接上了k8s的apiserver

 

8、在prometheus的WEB界面上提供了基本的查询K8S集群中每个POD的CPU使用情况,可以使用如下查询条件查询:

sum by (pod_name)( rate(container_cpu_usage_seconds_total{image!="", pod_name!=""}[1m] ) )

 

上述的查询有出现数据,说明node-exporter往prometheus中写入数据正常,接下来我们就可以部署grafana组件,实现更友好的webui展示数据了。

 

五、部署grafana组件
1、grafana deployment配置文件

cat grafana.yaml

复制代码
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: grafana-core
  namespace: kube-system
  labels:
    app: grafana
    component: core
spec:
  replicas: 1
  template:
    metadata:
      labels:
        app: grafana
        component: core
    spec:
      containers:
      - image: grafana/grafana:5.0.0
        name: grafana-core
        imagePullPolicy: IfNotPresent
        resources:
          limits:
            cpu: 100m
            memory: 100Mi
          requests:
            cpu: 100m
            memory: 100Mi
        env:
          - name: GF_AUTH_BASIC_ENABLED
            value: "true"
          - name: GF_AUTH_ANONYMOUS_ENABLED
            value: "false"
        readinessProbe:
          httpGet:
            path: /login
            port: 3000
        volumeMounts:
        - name: grafana-persistent-storage
          mountPath: /var
      volumes:
      - name: grafana-persistent-storage
        emptyDir: {}

---
apiVersion: v1
kind: Service
metadata:
  name: grafana
  namespace: kube-system
  labels:
    app: grafana
    component: core
spec:
  type: NodePort
  ports:
    - port: 3000
      nodePort: 31000
  selector:
    app: grafana
复制代码

部署grafana

kubectl create -f grafana.yaml

 

查看grafana pod和service

复制代码
# kubectl get pod -n kube-system
NAME                                   READY   STATUS    RESTARTS   AGE
coredns-779dfc4d59-rtpmk               1/1     Running   0          101m
grafana-core-6759c8945-5f4sv           1/1     Running   0          91m
kubernetes-dashboard-b54f75c69-tnn4h   1/1     Running   0          3h11m
node-exporter-sflqg                    1/1     Running   0          110m
node-exporter-xfsf8                    1/1     Running   0          110m
prometheus-58dc44f44c-z86rv            1/1     Running   0          109m
复制代码
复制代码
# kubectl get svc -n kube-system
NAME                   TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)          AGE
grafana                NodePort    10.250.1.230   <none>        3000:31000/TCP   93m
kube-dns               ClusterIP   10.250.0.2     <none>        53/UDP,53/TCP    103m
kubernetes-dashboard   NodePort    10.250.1.89    <none>        443:38443/TCP    3h23m
node-exporter          NodePort    10.250.0.165   <none>        9100:31672/TCP   112m
prometheus             NodePort    10.250.0.53    <none>        9090:30003/TCP   111m
复制代码

 

可以看到grafana nodeport端口为31000,可使用nodeip+nodeport的方式访问grafana  http://10.40.0.152:31000

 

默认用户名和密码都是admin

配置数据库源为prometheus,导入面板

 

 

可以直接输入模板编号315在线导入,或者下载好对应的json模板文件本地导入,面板模板下载地址https://grafana.com/dashboards/315

 

在线加载模板OK,选择prometheus数据库实例

 

 大功告成,可以看到炫酷的监控页面了。

 

 
分类: K8S
posted @ 2019-05-10 23:29  小强找BUG  阅读(23604)  评论(0编辑  收藏  举报