Dropping tests POJ - 2976

 

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ aibi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100

Hint

To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

1.令F=Σ(a[i])/Σ(b[i]);

2.令G=Σ(a[i])-F*Σ(b[i])=Σ(a[i]-F*(b[i]))

3.当G>0时,存在更优的F;

4.可以把a[i]-F*(b[i])看作每件商品对答案的贡献

 1 #include<iostream>
 2 #include<algorithm>
 3 #include<cmath>
 4 #include<cstdio>
 5 #include<cstring>
 6 using namespace std;
 7 
 8 int n,k;
 9 int a[1005],b[1005];
10 double d[1005];
11 
12 bool check(double tem){
13     double sum=0;
14     for(int i=0;i<n;i++) d[i]=a[i]-tem*(b[i]);
15     sort(d,d+n);
16     for(int i=n-1;i>=k;i--) sum+=d[i];
17     return sum>0 ? true:false;
18 }
19 
20 void d_search(double ma){
21     double l=0,r=ma;
22     for(int i=0;i<100;i++){
23         double mid=(l+r)/2.0;
24         if(check(mid)) l=mid;
25         else r=mid;
26     }
27     printf("%.0f\n",l*100);
28 }
29 int main()
30 {   while(~scanf("%d%d",&n,&k),n||k){
31         32         for(int i=0;i<n;i++) scanf("%d",&a[i]);
33         for(int i=0;i<n;i++) scanf("%d",&b[i]);
34         d_search(1.0);
35     }
36     return 0;
37 }

 

 

posted @ 2017-05-10 16:12  天之道,利而不害  阅读(235)  评论(0编辑  收藏  举报