cuda标准差拉伸
标准差拉伸(tif影像波段值类型由16bit转为8bit)cuda实现版本
使用gdal2.4.4,cuda10.1 ,thrust库(计算波段均值、方差值)
-
使用 gdal2.4.4 读取 GTiff 格式影像,读取数据至数组
-
使用 thrust库计算 最大值、最小值、波段均值、方差等
-
cuda10.1 核函数执行条件判断赋值
头文件引用
- thrust计算最大值、最小值引用
#include "thrust/extrema.h"
- 设备指针
#include "thrust/device_vector.h"
- thrust 可以在 cpu 和 gpu 端执行
#include "thrust/execution_policy.h"
通过调用函数的第一个参数指定 thrust::reduce(thrust::host, 或 thrust:device
- 在累加求和时注意总和值类型,数组类型为 unsigned short ,求和后会远远超过 该类型最大值,故在
auto band_sum = thrust::reduce(ptr, ptr + size, (ull)0); 指定计算类型为 unsigned long long
代码如下:
1 #include "cuda_runtime.h" 2 #include "device_launch_parameters.h" 3 4 #include "thrust/host_vector.h" 5 #include "thrust/device_vector.h" 6 #include "thrust/extrema.h" 7 #include "thrust/reduce.h" 8 #include "thrust/functional.h" 9 #include "thrust/execution_policy.h" 10 11 #include "gdal_util.h" 12 #include "cpl_conv.h" 13 14 // 求方差 15 struct variance : std::unary_function<us, double> 16 { 17 variance(double m) : mean(m) { } 18 const double mean; 19 __host__ __device__ double operator()(us data) const 20 { 21 return std::pow(data - mean, 2.0); 22 } 23 }; 24 25 __global__ void pixels_std(us* data, uc* res, const ull size, us band_max, us band_min, us uc_max, us uc_min, float k, float b) 26 { 27 ui tid = threadIdx.x + blockDim.x * blockIdx.x; 28 if (tid >= size) return; 29 30 const us d = data[tid]; 31 us v; 32 if (d == band_min) 33 v = band_min; 34 else if (d <= uc_min) 35 v = band_min; 36 else if (d >= uc_max) 37 v = band_max; 38 else if (k * d + b < band_min) 39 v = band_min; 40 else if (k * d + b > band_max) 41 v = band_max; 42 else if (k * d + b > band_min && k * d + b < band_max) 43 v = k * d + b; 44 else 45 v = d; 46 47 res[tid] = static_cast<uc>(v); 48 } 49 50 int main(int argc, char* argv[]) 51 { 52 // 16bit 转 8bit 53 GDALAllRegister(); 54 55 char psz_filename[1024] = "D:\\cuda\\PAN31.TIF"; 56 char psz_filename_new[1024] = "D:\\cuda\\PANNew.TIF"; 57 // GetGDALDriverManager()->AutoLoadDrivers(); 58 GDALDriver* tifDriver = GetGDALDriverManager()->GetDriverByName("GTiff"); 59 raster_info ri; 60 61 CPLSetConfigOption("GDAL_FILENAME_IS_UTF8", "NO"); 62 GDALDatasetH dataset_uint16 = GDALOpen(psz_filename, GA_Update); 63 64 // if (dataset_uint16 == NULL) 65 get_raster_info(dataset_uint16, &ri); 66 // 新影像 67 GDALDataset* dataset_uint8 = tifDriver->Create(psz_filename_new, ri.width, ri.height, GDALGetRasterCount(dataset_uint16), GDT_Byte,NULL); 68 dataset_uint8->SetGeoTransform(ri.geo_transform); 69 dataset_uint8->SetProjection(ri.projection); 70 71 printf("Size is %dx%dx%d\n", 72 ri.width, 73 ri.height, 74 GDALGetRasterCount(dataset_uint8)); 75 printf("Pixel Size = (%.6f,%.6f)\n", 76 ri.geo_transform[1], ri.geo_transform[5]); 77 78 cudaError_t status; 79 GDALRasterBandH h_band; 80 GDALRasterBandH h_band2; 81 const int x_size = ri.width; 82 const int y_size = ri.height; 83 const ull size = x_size * y_size; 84 const ull malloc_size = sizeof(us) * x_size * y_size; 85 86 // 原影像 87 us* h_data; 88 // 新影像 89 uc* h_res; 90 h_data = (us*)CPLMalloc(malloc_size); 91 h_res = (uc*)CPLMalloc(size); 92 us* d_data; 93 uc* d_res; 94 status = cudaMalloc((void**)&d_data, malloc_size); 95 status = cudaMalloc((void**)&d_res, size); 96 for (int i = 0; i < 3; ++i) 97 { 98 h_band = GDALGetRasterBand(dataset_uint16, i + 1); 99 h_band2 = GDALGetRasterBand(dataset_uint8, i + 1); 100 GDALRasterIO(h_band, GF_Read, 0, 0, x_size, y_size, 101 h_data, x_size, y_size, GDT_UInt16, 0, 0); 102 status = cudaMemcpy(d_data, h_data, malloc_size, cudaMemcpyHostToDevice); 103 thrust::device_ptr<us> ptr(d_data); 104 // 数组越界时抛出 msg:extrema failed to synchronize 105 // 最大值最小值仅为测试 106 const auto max_iter = thrust::max_element(ptr, ptr + size); 107 const auto min_iter = thrust::min_element(ptr, ptr + size); 108 us band_max = *max_iter; 109 us band_min = *min_iter; 110 band_max = 255; 111 band_min = 0; 112 // cpu 执行 113 // auto band_sum_cpu = thrust::reduce(thrust::host, h_data, h_data + size, (ull)0); 114 // gpu 执行 115 // 此处总和值类型使用 unsigned long long 116 auto band_sum = thrust::reduce(ptr, ptr + size, (ull)0); 117 double band_mean = band_sum / (double)size; 118 // 方差 (val-mean)*(val-mean) 119 auto band_std2 = thrust::transform_reduce(ptr, ptr + size, variance(band_mean), (double)0, thrust::plus<double>()); 120 double band_std = std::sqrt(band_std2/(double)(size-1)); 121 // 2.5倍标准差 122 float kn = 2.5; 123 float uc_max = band_mean + kn * band_std; 124 float uc_min = band_mean - kn * band_std; 125 float k = (band_max - band_min) / (uc_max - uc_min); 126 float b = (uc_max * band_min - uc_min * band_max) / (uc_max - uc_min); 127 if (uc_min <= 0) 128 uc_min = 0; 129 130 const ui block_size = 128; 131 const ui grid_size = (size - 1) / block_size + 1; 132 pixels_std << <grid_size, block_size >> > (d_data, d_res, size, band_max, band_min, uc_max, uc_min, k, b); 133 134 cudaDeviceSynchronize(); 135 136 cudaMemcpy(h_res, d_res, size, cudaMemcpyDeviceToHost); 137 // 138 GDALRasterIO(h_band2, GF_Write, 0, 0, x_size, y_size, 139 h_res, x_size, y_size, GDT_Byte,0, 0); 140 } 141 cudaFree(d_data); 142 cudaFree(d_res); 143 CPLFree(h_data); 144 CPLFree(h_res); 145 146 GDALClose(dataset_uint16); 147 GDALClose(dataset_uint8); 148 149 return 0; 150 }
python版本 使用 gdal+numpy实现,GitHub链接:
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步