今天我们再谈谈Hive中的三种不同的数据导出方式。
依据导出的地方不一样,将这些方式分为三种:
(1)、导出到本地文件系统。
(2)、导出到HDFS中;
(3)、导出到Hive的还有一个表中。
为了避免单纯的文字,我将一步一步地用命令进行说明。
一、导出到本地文件系统
-
-
hive> insert overwrite local directory '/home/wyp/wyp'
-
> select * from wyp;
复制代码
这条HQL的执行须要启用Mapreduce完毕,执行完这条语句之后,将会在本地文件系统的/home/wyp/wyp文件夹下生成文件,这个文件是Reduce产生的结果(这里生成的文件名称是000000_0)。我们能够看看这个文件的内容:
-
[wyp@master ~/wyp]$ vim 000000_0
-
5^Awyp1^A23^A131212121212
-
6^Awyp2^A24^A134535353535
-
7^Awyp3^A25^A132453535353
-
8^Awyp4^A26^A154243434355
-
1^Awyp^A25^A13188888888888
-
2^Atest^A30^A13888888888888
-
3^Azs^A34^A899314121
复制代码
能够看出。这就是wyp表中的全部数据。数据中的列与列之间的分隔符是^A(ascii码是\00001)。
和导入数据到Hive不一样。不能用insert into来将数据导出:
-
-
hive> insert into local directory '/home/wyp/wyp'
-
> select * from wyp;
-
NoViableAltException(79@[])
-
at org.apache.hadoop.hive.ql.parse.HiveParser_SelectClauseParser.selectClause(HiveParser_SelectClauseParser.java:683)
-
at org.apache.hadoop.hive.ql.parse.HiveParser.selectClause(HiveParser.java:30667)
-
at org.apache.hadoop.hive.ql.parse.HiveParser.regular_body(HiveParser.java:28421)
-
at org.apache.hadoop.hive.ql.parse.HiveParser.queryStatement(HiveParser.java:28306)
-
at org.apache.hadoop.hive.ql.parse.HiveParser.queryStatementExpression(HiveParser.java:28100)
-
at org.apache.hadoop.hive.ql.parse.HiveParser.execStatement(HiveParser.java:1213)
-
at org.apache.hadoop.hive.ql.parse.HiveParser.statement(HiveParser.java:928)
-
at org.apache.hadoop.hive.ql.parse.ParseDriver.parse(ParseDriver.java:190)
-
at org.apache.hadoop.hive.ql.Driver.compile(Driver.java:418)
-
at org.apache.hadoop.hive.ql.Driver.compile(Driver.java:337)
-
at org.apache.hadoop.hive.ql.Driver.run(Driver.java:902)
-
at org.apache.hadoop.hive.cli.CliDriver.processLocalCmd(CliDriver.java:259)
-
at org.apache.hadoop.hive.cli.CliDriver.processCmd(CliDriver.java:216)
-
at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:413)
-
at org.apache.hadoop.hive.cli.CliDriver.run(CliDriver.java:756)
-
at org.apache.hadoop.hive.cli.CliDriver.main(CliDriver.java:614)
-
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
-
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
-
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
-
at java.lang.reflect.Method.invoke(Method.java:597)
-
at org.apache.hadoop.util.RunJar.main(RunJar.java:212)
-
FAILED: ParseException line 1:12 missing TABLE at 'local' near 'local' in select clause
-
line 1:18 cannot recognize input near 'directory' ''/home/wyp/wyp'' 'select' in select clause
复制代码
二、导出到HDFS中
和导入数据到本地文件系统一样的简单,能够用以下的语句实现:
-
-
hive> insert overwrite directory '/home/wyp/hdfs'
-
> select * from wyp;
复制代码
将会在HDFS的/home/wyp/hdfs文件夹下保存导出来的数据。注意,和导出文件到本地文件系统的HQL少一个local,数据的存放路径就不一样了。
三、导出到Hive的还有一个表中
这也是Hive的数据导入方式,例如以下操作:
-
-
hive> insert into table test
-
> partition (age='25')
-
> select id, name, tel
-
> from wyp;
-
#####################################################################
-
这里输出了一堆Mapreduce任务信息。这里省略
-
#####################################################################
-
Total MapReduce CPU Time Spent: 1 seconds 310 msec
-
OK
-
Time taken: 19.125 seconds
-
-
hive> select * from test;
-
OK
-
5 wyp1 131212121212 25
-
6 wyp2 134535353535 25
-
7 wyp3 132453535353 25
-
8 wyp4 154243434355 25
-
1 wyp 13188888888888 25
-
2 test 13888888888888 25
-
3 zs 899314121 25
-
Time taken: 0.126 seconds, Fetched: 7 row(s)
复制代码
细心的读者可能会问,怎么导入数据到文件里,数据的列之间为什么不是wyp表设定的列分隔符呢?事实上在Hive 0.11.0版本号之间,数据的导出是不能指定列之间的分隔符的,仅仅能用默认的列分隔符,也就是上面的^A来切割。这样导出来的数据非常不直观。看起来非常不方便!
假设你用的Hive版本号是0.11.0。那么你能够在导出数据的时候来指定列之间的分隔符。
以下具体介绍:
在Hive0.11.0版本号新引进了一个新的特性,也就是当用户将Hive查询结果输出到文件,用户能够指定列的切割符,而在之前的版本号是不能指定列之间的分隔符。这样给我们带来了非常大的不变,在Hive0.11.0之前版本号我们通常是这样用的:
-
hive> insert overwrite local directory '/home/wyp/Documents/result'
-
hive> select * from test;
-
复制代码
保存的文件列之间是用^A(\x01)来切割
-
196^A242^A3
-
186^A302^A3
-
22^A377^A1
-
244^A51^A2
复制代码
注意,上面是为了显示方便。而将\x01写作^A,在实际的文本编辑器我们是看不到^A的,而是一个奇怪的符号。
如今我们能够用Hive0.11.0版本号新引进了一个新的特性,指定输出结果列之间的分隔符:
-
hive> insert overwrite local directory '/home/wyp/Documents/result'
-
hive> row format delimited
-
hive> fields terminated by '\t'
-
hive> select * from test;
复制代码
再次看出输出的结果
-
196 242 3
-
186 302 3
-
22 377 1
-
244 51 2
复制代码
结果好看多了。假设是map类型能够用以下语句来切割map的key和value
-
hive> insert overwrite local directory './test-04'
-
hive> row format delimited
-
hive> FIELDS TERMINATED BY '\t'
-
hive> COLLECTION ITEMS TERMINATED BY ','
-
hive> MAP KEYS TERMINATED BY ':'
-
hive> select * from src;
复制代码
依据上面内容。我们来进一步操作:
-
hive> insert overwrite local directory '/home/yangping.wu/local'
-
> row format delimited
-
> fields terminated by '\t'
-
> select * from wyp;
复制代码
-
[wyp@master ~/local]$ vim 000000_0
-
5 wyp1 23 131212121212
-
6 wyp2 24 134535353535
-
7 wyp3 25 132453535353
-
8 wyp4 26 154243434355
-
1 wyp 25 13188888888888
-
2 test 30 13888888888888
-
3 zs 34 899314121
复制代码
事实上。我们还能够用hive的-e和-f參数来导出数据。当中-e 表示后面直接接带双引號的sql语句;而-f是接一个文件,文件的内容为一个sql语句,例如以下:
-
-
[wyp@master ~/local][ DISCUZ_CODE_26 ]nbsp; hive -e "select * from wyp" >> local/wyp.txt
-
[wyp@master ~/local][ DISCUZ_CODE_26 ]nbsp; cat wyp.txt
-
5 wyp1 23 131212121212
-
6 wyp2 24 134535353535
-
7 wyp3 25 132453535353
-
8 wyp4 26 154243434355
-
1 wyp 25 13188888888888
-
2 test 30 13888888888888
-
3 zs 34 899314121
复制代码
得到的结果也是用\t切割的。也能够用-f參数实现:
-
[wyp@master ~/local]$ cat wyp.sql
-
select * from wyp
-
[wyp@master ~/local]$ hive -f wyp.sql >> local/wyp2.txt
复制代码
上述语句得到的结果也是\t切割的。