Spark RDD的fold和aggregate为什么是两个API?为什么不是一个foldLeft?

欢迎关注我的新博客地址:http://cuipengfei.me/blog/2014/10/31/spark-fold-aggregate-why-not-foldleft/

大家都知道Scala标准库的List有一个用来做聚合操作的foldLeft方法。

比方我定义一个公司类:

1
case class Company(name:String, children:Seq[Company]=Nil)

它有名字和子公司。 然后定义几个公司:

1
val companies = List(Company("B"),Company("A"),Company("T"))

三家大公司,然后呢,我如果有一家超牛逼的公司把它们给合并了:

1
companies.foldLeft(Company("King"))((king,company)=>Company(name=king.name,king.children:+company))

这个运行的结果是这种:

1
2
scala> companies.foldLeft(Company("King"))((king,company)=>Company(name=king.name,king.children:+company))
res6: Company = Company(King,List(Company(B,List()), Company(A,List()), Company(T,List())))

可见foldLeft的结果是一家包括了BAT三大家得新公司。

由List[Company]聚合出一个新的Company,这样的属于foldLeft的同构聚合操作。

同一时候,foldLeft也能够做异构的聚合操作:

1
companies.foldLeft("")((acc,company)=>acc+company.name)

它的运行结果是这种:

1
2
scala> companies.foldLeft("")((acc,company)=>acc+company.name)
res7: String = BAT

由List[Company]聚合出一个String。

这种API感觉非常方便。仅仅要是聚合。不管同构异构。都能够用它来做。

近期接触了Spark,当中的RDD是做分布式计算时最经常使用的一个类。

RDD有一个叫做fold的API,它和foldLeft的签名非常像,唯一差别是它仅仅能做同构聚合操作。

也就是说假设你有一个RDD[X],通过fold,你仅仅能构造出一个X。

假设我想通过一个RDD[X]构造一个Y出来呢?

那就得用aggregate这个API了,aggregate的签名是这种:

1
aggregate[U](zeroValue: U)(seqOp: (U, T)  U, combOp: (U, U)  U)(implicit arg0: ClassTag[U]): U

它比fold和foldLeft多须要一个combOp做參数。

这让我非常不解,同构和异构的API干嘛非得拆成两个呢?怎么不能学Scala的标准库,把它做成类似foldLeft的样子呢?

后来想明确了,这是因为Spark须要分布运算造成的。

先想一下Scala List的foldLeft是怎么工作的?

1
companies.foldLeft(Company("King"))((king,company)=>Company(name=king.name,king.children:+company))
  1. 拿到初始值,即名字为king的公司,把它和list中的第一个公司合并,成为一个包括一家子公司的新公司
  2. 把上一步中的新公司拿来和list中的第二个公司合并,成为一个包括两家子公司的新公司
  3. 把上一步中的新公司拿来和list中的第三个公司合并,成为一个包括三家子公司的新公司

这是同构的过程。

1
companies.foldLeft("")((acc,company)=>acc+company.name)
  1. 拿到初始值,即空字符串。把它和list中的第一个公司的名字拼在一起,成为B
  2. 把上一步中的B第二个公司名字拼一起。成为BA
  3. 把上一步中的BA拿来和list中的第三个公司的名字拼一起,成为BAT

这是异构的过程。

像多米诺骨牌一样,从左到右依次把list中的元素吸收入结果中。

如今如果RDD[X]中有一个类似foldLeft的API,其签名和foldLeft一致,我如今调用foldLeft,给它一个f:(Y,X)=>Y,接下来该发生什么呢?

  1. 由于要分布计算,所以我先要把手里的非常多个X分成几份。分发到不同的节点上去
  2. 每一个节点把拿到的非常多个X计算出一个Y出来
  3. 把全部节点的结果拿来,这时我手里就有了非常多个Y
  4. 啊。。。我不知道怎么把非常多个Y变成一个Y啊。。。

因为Spark的RDD不像Scala的List一样仅仅须要推倒一副多米诺骨牌。而是要推倒非常多副。最后再对非常多副多米诺骨牌的结果做聚合。

这时假设是同构还好,我仅仅须要再用f:(X,X)=>X做一遍就ok了。

可是假设是异构的,那我就必须得再须要一个f:(Y,Y)=>Y了。

posted @ 2016-04-18 21:24  zfyouxi  阅读(677)  评论(0编辑  收藏  举报