uva 1390 - Interconnect(期望+哈希+记忆化)
题目大意:给出n表示有n个点,m表示有m条边,如今任选两点建立一条边。直到整个图联通,问说还需建立边数的期望,建过边的两点仍能够建边。
解题思路:哈希的方法非常是巧妙。将各个联通分量中节点的个数c[i]转换成一个30进制的数(由于节点个数最多为30)。由于结果非常大。所以对1e5+7取模。获得的哈希值作为插入和搜索的起点。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 30;
const int mod = 1e5+7;
struct state {
int c[maxn], flag;
double val;
void clear () { memset(c, 0, sizeof(c)); }
int hash() {
int x = 0;
for (int i = 0; i < maxn; i++)
x = (x * 30 + c[i]) % mod;
return x;
}
bool operator == (const state& u) {
for (int i = 0; i < maxn; i++)
if (c[i] != u.c[i])
return false;
return true;
}
bool operator != (const state& u) {
return !(*this == u);
}
}start, ha[mod+7];
int n, m, f[maxn+5], s[maxn+5];
double dive;
int getfar (int x) {
return f[x] == x ? x : f[x] = getfar(f[x]);
}
void link (int x, int y) {
int p = getfar(x);
int q = getfar(y);
if (p == q)
return;
f[q] = p;
s[p] += s[q];
}
void inserthash (state u) {
int x = u.hash();
while (ha[x].flag) {
if (++x == mod)
x = 0;
}
ha[x] = u;
ha[x].flag = 1;
}
double gethash (state u) {
int x = u.hash();
while (ha[x].flag && ha[x] != u) {
if (++x == mod)
x = 0;
}
return ha[x] == u ? ha[x].val : -1;
}
void init () {
dive = n * (n - 1) / 2.0;
start.clear();
for (int i = 0; i <= n; i++) {
s[i] = 1;
f[i] = i;
}
for (int i = 0; i < mod; i++)
ha[i].flag = 0;
int a, b;
for (int i = 0; i < m; i++) {
scanf("%d%d", &a, &b);
link(a, b);
}
for (int i = 1; i <= n; i++) {
if (f[i] == i)
start.c[i-1] = s[i];
}
}
double solve (state u) {
sort(u.c, u.c+maxn);
if (u.hash() == n)
return 0;
double x = gethash(u);
if (x != -1.0)
return x;
double ans = 0, tmp = 0;
for (int i = 0; i < maxn; i++)
tmp += u.c[i] * (u.c[i] - 1) / 2.0;
for (int i = 0; i < maxn; i++) {
if (u.c[i] == 0)
continue;
for (int j = i+1; j < maxn; j++) {
if (u.c[j] == 0)
continue;
state v = u;
v.c[i] += v.c[j];
v.c[j] = 0;
ans += u.c[i] * u.c[j] * solve(v);
}
}
ans /= dive;
ans++;
ans /= (1 - tmp / dive);
u.val = ans;
inserthash(u);
return ans;
}
int main () {
while (scanf("%d%d", &n, &m) == 2) {
init();
printf("%.10lf\n", solve(start));
}
return 0;
}