Kafka consumer Job异常重置offset

一、业务场景

Kafka consumer 任务出现异常的时候如何保证数据的质量?在以往的经验中,为了保证数据的精准一次,使用mysql表记录下程序异时数据的partition和offset,任务重启的时候查询下mysql 表中是否有程序异常的记录,如果有就从mysql表中取出对应partition的offset,重置consumer的消费。以下案例为使用Kafka consumer消费kafka的数据,ETL之后写入HBase。

 

二、代码实践

  1 package scala.com.qsq.report.consumer
  2 
  3 import java.sql.ResultSet
  4 import java.text.SimpleDateFormat
  5 import java.util
  6 import java.util.{Date, Properties}
  7 import com.qsq.config.LoadConfig
  8 import com.qsq.utils.hbase.HbaseClientObj
  9 import com.qsq.utils.jdbc.C3p0Pools
 10 import com.qsq.utils.JsonUtils
 11 import com.qsq.utils.constant.Constants
 12 import kafka.common.{OffsetAndMetadata, TopicAndPartition}
 13 import kafka.consumer._
 14 
 15 import scala.collection.mutable.ArrayBuffer
 16 
 17 object MyConsumer {
 18 
 19   def main(args: Array[String]): Unit = {
 20     val HBASE_A_RT_CREDIT = "bee:a_user"
 21 
 22     val dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
 23 
 24     // kafka参数
 25     val props = new Properties()
 26     val zk = LoadConfig.getProperties(Constants.START_ENV_REALTIME, "kafka.zookeeper.quorum")
 27     props.put("zookeeper.connect", zk)
 28     props.put("group.id", "call_group")
 29     props.put("auto.offset.reset", "largest")
 30     props.put("fetch.message.max.bytes", "50000000")
 31     props.put("replica.fetch.max.bytes", "50000000")
 32     val config = new ConsumerConfig(props)
 33 
 34     // 创建consumer
 35     val consumer = kafka.consumer.Consumer.createJavaConsumerConnector(config)
 36     var hashMap = new util.HashMap[TopicAndPartition, OffsetAndMetadata]()
 37     val conn = C3p0Pools.getConnection()
 38 
 39     // 查询mysql表中记录
 40     val res: ResultSet = C3p0Pools.query(conn, """ SELECT * FROM shop.kafka_topic_info WHERE topics = ? AND type = 1 """, Array("u-rall"))
 41 
 42     // 有上次失败的记录
 43     while ( res.next() ) {
 44       println("恢复topic : " + res.getString("topics"))
 45       println("恢复partition: " + res.getInt("partitions"))
 46       println("恢复offset: " + res.getLong("offsets"))
 47       hashMap.put(TopicAndPartition(res.getString("topics") ,res.getInt("partitions")), OffsetAndMetadata( res.getLong("offsets") ))
 48     }
 49     conn.close()
 50 
 51     if (!hashMap.isEmpty) {
 52       println("恢复offset---------------------- " )
 53       consumer.commitOffsets( hashMap, true )
 54     }
 55 
 56     registerShutdownHook()
 57     // 开启3个线程
 58     run(3)
 59     def run(numThread: Int) = {
 60 
 61       println("run----------------------")
 62       val topicMap = new util.HashMap[String, Integer]()
 63       topicMap.put("u-rall", numThread)
 64       val decoder = new kafka.serializer.StringDecoder(null)
 65       val topicStreams = consumer.createMessageStreams(topicMap, decoder, decoder)
 66       val consumerStreams = topicStreams.values().iterator()
 67       while (consumerStreams.hasNext) {
 68         val streams: util.List[KafkaStream[String, String]] = consumerStreams.next()
 69         (0 until streams.size()).foreach(i => {
 70           val stream = streams.get(i).iterator
 71           new Thread(new Runnable {
 72             override def run(): Unit = {
 73               while (stream.hasNext()) {
 74                 val mam = stream.next
 75                 val message: String = mam.message()
 76 
 77                 try {
 78                   if (message.size > 0) {
 79 
 80                     val jsonMsgObj = JsonUtils.getObjectFromJson(message)
 81                     val id = jsonMsgObj.getOrDefault("id", "").toString
 82                     val identity = jsonMsgObj.getOrDefault("identity", "").toString
 83                     val dataMsg = ArrayBuffer[(String, AnyRef)]()
 84                     dataMsg += (("id", id))
 85                     dataMsg += (("identity", identity))
 86                     dataMsg += (("data", message))
 87                     dataMsg += (("create_time", dateFormat.format(new Date())))
 88 
 89                     HbaseClientObj.getInstance().init(HBASE_A_RT_CREDIT)
 90                     HbaseClientObj.getInstance().put(id, "cf", dataMsg)
 91 
 92                     // 记录消息信息
 93                     val partition: Int = mam.partition
 94                     println("partition = " + partition + "  time: " + dateFormat.format(new Date()))
 95                     val offset: Long = mam.offset
 96                     println("offset = " + offset + "  time: " + dateFormat.format(new Date()))
 97                     val topic:String = mam.topic
 98                     println("topic = " + topic + "  time: " + dateFormat.format(new Date()))
 99 
100                     try {
101                       // 更新mysql
102                       C3p0Pools.execute(
103                         """
104                           |INSERT INTO shop.kafka_topic_info
105                           |( type, topics, partitions, offsets, create_date, update_date )
106                           |VALUES
107                           |( '1', ?, ?, ?, NOW(), NOW()  )
108                           |ON DUPLICATE KEY UPDATE partitions = VALUES(partitions), offsets = VALUES(offsets), update_date = NOW()
109                         """.stripMargin, Array(topic, partition, offset))
110                     } catch {
111                       case e: Exception =>
112                         println( s"failed save to mysql ${e}" )
113                     }
114 
115                   }
116                 } catch {
117                   case e: Exception =>
118                     e.printStackTrace()
119                     println(s"failed consumer message ${e}")
120 
121                 }
122               }
123             }
124           }).start()
125         })
126       }
127     }
128 
129 
130     def release(): Unit = {
131       try {
132         println("release consumer...")
133         consumer.shutdown
134       } catch {
135         case e: Exception => println(s"failed release consumer ${e}")
136       }
137     }
138 
139     def registerShutdownHook(): Unit = {
140       Runtime.getRuntime.addShutdownHook(new Thread() {
141         override def run(): Unit = {
142           release
143         }
144       })
145     }
146 
147     Thread.sleep(10000)
148   }
149 }

三、总结

使用Kafka consumer的好处是比较轻量级,在数据量可控的情况下,占用资源少,采用mysql来记录异常的offset信息虽然带来额外的系统开销,却能使数据更加可靠,可以指定从任意的offset开始消费,方便灵活。

posted @ 2020-06-19 16:02  追风dylan  阅读(661)  评论(0编辑  收藏  举报