树状数组

      平常我们会遇到一些对数组进行维护查询的操作,比较常见的如,修改某点的值、求某个区间的和,而这两种恰恰是树状数组的强项!当然,数据规模不大的时候,对于修改某点的值是非常容易的,复杂度是O(1),但是对于求一个区间的和就要扫一遍了,复杂度是O(N),如果实时的对数组进行M次修改或求和,最坏的情况下复杂度是O(M*N),当规模增大后这是划不来的!而树状数组干同样的事复杂度却是O(M*lgN),别小看这个lg,很大的数一lg就很小了。

      树状数组所白了是按照二分对数组进行分组;维护和查询都是O(lgn)的复杂度,复杂度取决于最坏的情况,也是O(lgn);lowbit这里只是一个技巧,关键在于明白c数组的构成规律;分析的过程二进制一定要深入人心,当作心目中的十进制。

void add(int k,int num)  
{  
    while(k<=n)  
    {  
        tree[k]+=num;  
        k+=k&-k;  
    }  
}  
int read(int k)//1~k的区间和  
{  
    int sum=0;  
    while(k)  
    {  
        sum+=tree[k];  
        k-=k&-k;  
    }  
    return sum;  
}  

 

posted @ 2017-01-04 17:12  陈泽泽  阅读(154)  评论(0编辑  收藏  举报