数据结构 - 绪论

01.绪论

1. 概念

1.1 数据结构

  • 数据 Data:信息的载体。能被计算机识别并处理的符号的集合。
  • 数据元素 Data element:数据的基本单位,通常作为一个整体进行考虑和处理。一个数据元素往往由若干数据项组成。数据项是组成数据元素的不可分割的最小单位。

如学生的信息记录就是一个数据元素,它由学号、姓名、性别等组成。

  • 数据对象 Data object:具有相同性质的数据元素的集合,是数据的一个子集。

  • 数据类型 Data type:一个的集合和定义在此集合上的一组操作的总称。

    • 抽象数据类型ADT( Abstract Data Type ):一个数学模型(逻辑结构)及在其上定义的一组操作。
  • 数据结构 Data structure:相互之间存在一种或多种特定关系的数据元素的集合。数据结构包含三方面内容:逻辑结构存储结构数据的运算

    • 逻辑结构: 数据结构的逻辑抽象、数据元素之间的数学关系.
    • 存储结构: 又称存储映像结点,数据结构在计算机中的表示,也称物理结构.
      ::: tip 结点与节点
      结点:数据结构的物理存储结构.
      节点:在计算机网络中通常指拥有数据存储、转发能力的计算机设备终端.
      在数据结构中两者可以通用,但前者常用.
      :::

1.2 算法

1. 定义

算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
算法组成要素:操作、控制结构、数据结构

  • 操作:
    • 算术运算:加、减、乘、除。
    • 关系比较:大于、小于、等于、不等于。
    • 逻辑运算:与、或、非。
    • 数据传输:输入、输出、赋值(计算)。
  • 算法的控制结构:
    算法的控制结构给出了算法的框架,决定了各操作的执行顺序。
    • 顺序结构:个操作依次进行。
    • 选择结构:有条件是否成立来决定选择执行。
    • 循环结构:有些操作要重复执行,直到满足某个条件才结束,这种控制结构也称为重复或迭代结构。
  • 数据结构:
    算法操作的对象是数据,数据的逻辑关系、存储方式和处理方式即是数据结构。

2. 特性

算法是满足下列性质的指令序列.

  • 有穷性:一个算法总是执行有穷步数后结束,且每一步都在有穷时间内完成。
  • 确定性:算法中每条指令必须有确切含义,没有二义性,只有唯一一条执行路径。对于相同的输入只有相同的输出。
  • 可行性:算法是可执行的,其操作可以通过已经实现的基本操作执行有限次来实现。
  • 输入:一个算法有零个或多个输入。
  • 输出:一个算法有一个或多个输出。

3. 算法设计要求

  • 正确性 correctness
    • 没有语法错误
    • 对于精心选择的,苛刻的***难的数据也能输出正确的结果
    • 程序对于一切合法的输入数据都能得到正确的输出结果
  • 可读性 readability
  • 健壮性 robustness
    • 指当输入非法数据的时候,算法能够恰当的做出反应或进行相应处理,而不是输出莫名其妙的结果
    • 处理出错的方法,不应是中断程序的执行,而应是返回一个表示错误或者错误性质的值,以便在更高抽象层次上进行处理
  • 高效性 efficiency
    要求算法花费尽量少的时间(时间效率)和尽量低的存储需求(空间效率)。

4. 计算机问题求解步骤

  1. 分析问题: 分析问题的输入、要求和输出.
  2. 数据结构设计: 选择或设计能有效表示和存储问题所涉及的数据对象的、能支持算法实现的数据结构.
  3. 算法设计: 选择算法策略、描述和逐步细化算法步骤.
  4. 算法分析: 完善改进数据结构和算法.
  5. 程序实现: 用某种编程语言定义数据结构、编写实现算法的代码并运行调试.

2. 数据结构的两种层次

2.1 逻辑结构

描述数据元素之间的逻辑关系,与数据的存储无关,独立于计算机;是从具体问题抽象出来的数学模型。

1. 线性结构

有且仅有一个开始和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后继。

例如:线性表、栈(特殊线性表)、队列(特殊线性表)、串、数组、广义表等

2. 非线性结构

一个结点可能有多个直接前趋和直接后继。

例如: (一对多) 和 (多对多)

  • 集合结构:数据元素除了“同属一个集合”外没有其他关系.
  • 树:数据元素存在一对多的关系. 棋盘预测分析,数据像树木一样展开
  • 图:数据元素存在多对多关系. 地图最短路径,数据像一张网格一样错综复杂

2.2 存储结构(物理结构)

数据元素及其关系在计算机存储器中的结构(存储方式)。

1. 顺序存储结构

用一组连续的存储单元依次存放数据。数据元素之间的逻辑关系由元素的存储位置来表示
C语言中的数组、C++中的vector容器都是顺序存储结构
  • 优点: 实现随机存取、每个元素占用最少的存储空间
  • 缺点: 只能使用相邻的一整块存储单元,可能产生较多的外部碎片

2. 链式存储结构

存储空间不连续,元素之间的逻辑关系用结点的指针表示。
  • 优点: 不会出现碎片现象,充分利用所有存储单元。在表示各种逻辑结构时往往比顺序结构更加方便。
  • 缺点: 指针额外占用存储空间、只能实现顺序存取。

3. 索引存储结构

建立附加的索引表,其中每项称为索引项
  • 优点: 检索速度快。
  • 缺点; 索引表额外占用存储空间。增删数据也要修改索引表

4. 散列(哈希)存储结构

根据元素的关键字直接计算出该元素的存储地址
  • 优点: 检索、增删改查结点的操作都很快。
  • 缺点: 若散列函数不好,可能出现存储单元冲突,解决冲突会增加时间和空间开销。

3. 算法和算法分析

3.1 时间复杂度

  • 一个语句的频度是该语句在算法中被重复执行的次数。

  • 算法运行时间=
    $$\sum_{
    \begin{subarray}{l}
    \end{subarray}}语句的频度×语句执行一次所需时间$$

  • 算法中所有语句的频度之和记为 T(n),它是问题规模n的函数。时间复杂度主要分析T(n)的数量级。

    算法中基本运算(最深层循环内的语句)的频度与 T(n) 同数量级

    f(n) 表示算法中的基本运算的频度。

若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号),简称时间复杂度

O(f(n)) 表示 f(n) 中随 n 增长最快的项,将其系数置1作为时间复杂度的度量(渐进时间复杂度)。

T(n)=O(f(n)) 如f(n)=an3+bn2,则时间复杂度为O(n^3)

::: tip 问题规模n的含义

  • 循环:条件判断执行次数
  • 排序:n为数组中元素个数
  • 矩阵:n为矩阵阶数或行列数
  • 多项式:n为多项式的项数
  • 集合:n为元素个数
  • 树:n为树的节点个数
  • 图:n为图的顶点数或边数
    :::
    计算时间复杂度重点是找到问题规模 n基本语句频度 t 之间的数学关系。

::: tip 时间复杂度具体求法

  • 循环主体中的变量参与循环条件的判断
    • 找出基本操作
    • 设基本操作执行次数为T(n),根据初始条件和基本操作语句确定变量与次数的关系式
    • 带回循环条件,求出T(n),确定O(n)
  • 循环主体中的变量与循环条件无关
    • 递归程序
      • 确定递推关系(注意这里确定的是基本操作次数的递推关系,不要和变量的值搞混)
      • 推出递推关系与执行次数的表达式
      • 令低级递推关系中的次数为常数(0或1),整理式子
      • 推导出T(n)
    • 非递归程序
      • 等比、等差数列求和
        :::

平均时间复杂度A(n)

  • 最坏情况下的时间复杂度W(n).
    算法求解输入规模为 n 的实例所需要的最长时间.
  • 平均状况下的时间复杂度A(n).
    在给定同样规模为 n 的输入实例的概率分布下,算法求解这些实例所需要的平均时间.
    设 S 是规模为 n 的实例集,实例 I∈S 的概率是 P_I
    算法对实例I执行的基本运算次数是 t_I

    在某些情况下可以假定每个输入实例概率相等.

example1

x=0,y=0                  //1次    
for(int k=0;k<n;k++)     //n+1(判断语句执行n+1,循环体执行n)
    x++;                 //n 
for(int i=0;i<n;i++)     //n+1
    for(int j=0;j<n;j++) //n(n+1)
        y++;             //n*n

T(n)=O(n^2)


example2

for (i=1;i<n;i++)         //
    for (j=1;j<=i;j++)
        for (k=1;k<=j;k++)
            x=x+1;

第二重是 j 到 i,j是变量,相当于 1+2+3+…+i 等于i*(i+1)/2


example3

i=1;
while (i<=n)
    i=i*2;//找出基本运算

设循环体执行次数为 $x$ ,令 $2^x≤n$,得$x≤log_2n$
$T(n)=O(log_2n)$


有时,$f(n)$(基本操作执行次数)随问题的输入数据集的不同而不同。

::: tip 加法规则和乘法规则
将复杂算法分解为几个部分,有

  • 顺序:T(n)=T1(n)+T2(n)=O(max(f(n)+g(n)))
  • 嵌套、循环:T(n)=T1(n)*T2(n)=O(f(n) * g(n))
    :::

渐进时间复杂度按递增顺序:
O(1) < O(log2n) < O(n) < O(nlog2n) < O(n^k) < O(2^n) < O(n!) < O(n^n)

3.2 空间复杂度

空间复杂度:该算法所耗费的存储空间,它是问题规模n的函数。
S(n)=O(g(n)).

posted @ 2023-04-18 10:54  zeroy610  阅读(219)  评论(1编辑  收藏  举报