转载【趣味算术】能被2、3、5、7、9、11、13整除的数的特点

原文地址  http://blog.sina.com.cn/s/blog_76b0cde40100t32r.html

被2整除的数是偶数。

被3整除的数必须各个位数上的数加起来为三的倍数,比如136,1+3+6=10不行,147=1+4+7=12,就可以。

被5整除个位为0或者5.

能被7整除的数的特征
  一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.
   这种方法叫“割减法”.此法还可简化为:从一个数减去7的10倍、20倍、30倍、……到余下一个100以内的数为止,如果余数能被7整除,那么,这个数就能被7整除.

能被11整除的数的特征
  把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.
例如:判断491678能不能被11整除.
奇位数字的和9+6+8=23
偶位数位的和4+1+7=12  23-12=11
因此,491678能被11整除.
这种方法叫“奇偶位差法”.
除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍、20倍、30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.
又如:判断583能不能被11整除.
用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除。

能被13整除的数的特征
一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被13整除,那么,这个多位数就一定能被13整除.
例如:判断383357能不能被13整除.
这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.
这个方法也同样适用于判断一个数能不能被7或11整除.如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.仍以原数为例,末三位数字与前两数字的差是396,396不能被7整除,因此,283697就一定不能被7整除.

整除 - 基本规律 

整除规则第一条(1):任何数都能被1整除。整除规则第二条(2):个位上是2、4、6、8、0的数都能被2整除。整除规则第三条(3):每一位上数字之和能被3整除,那么这个数就能被3整除。整除规则第四条(4):最后两位能被4整除的数,这个数就能被4整除。 整除规则第五条(5):个位上是0或5的数都能被5整除。整除规则第六条(6):一个数只要能同时被2和3整除,那么这个数就能被6整除。整除规则第七条(7):把个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数,则原数能被7整除。 整除规则第八条(8):最后三位能被8整除的数,这个数就能被8整除。整除规则第九条(9):每一位上数字之和能被9整除,那么这个数就能被9整除。整除规则第十条(10): 若一个整数的末位是0,则这个数能被10整除 。整除规则第十一条(11):若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!整除规则第十二条(12):若一个整数能被3和4整除,则这个数能被12整除。整除规则第十三条(13):若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。整除规则第十四条(14):a 若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。b 若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。整除规则第十五条(15):a 若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。b 若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。整除规则第十六条(16):若一个整数的末四位与前面5倍的隔出数的差能被23整除,则这个数能被23整除。整除规则第十七条(17):若一个整数的末四位与前面5倍的隔出数的差能被29整除,则这个数能被29整除。整除规则第十八条(18):若一个整数的末四位与前面的数的差能被73整除,则这个数能被73整除。整除规则第十九条(19):若一个整数的末四位与前面的数的差能被137整除,则这个数能被137整除。整除规则第二十条(20):若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除 。切记:0 不能做除数!

posted @ 2015-08-12 20:49  Painting、时光  阅读(4472)  评论(0编辑  收藏  举报