多校7.21A——维护技巧——OO’s Sequence
Problem Description
OO has got a array A of size n ,defined a function f(l,r) represent the number of i (l<=i<=r) , that there's no j(l<=j<=r,j<>i) satisfy ai mod aj=0,now OO want to know
∑i=1n∑j=inf(i,j) mod (109+7).
Input
There are multiple test cases. Please process till EOF.
In each test case:
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers ai(0<ai<=10000)
In each test case:
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers ai(0<ai<=10000)
Output
For each tests: ouput a line contain a number ans.
Sample Input
5
1 2 3 4 5
Sample Output
23
Source
Recommend
/* 题意:对于所有的子区间找a[i]在这个区间没有因子的所有的情况 对于一个数a[i]它的价值是L[i]:从左往右最接近的因子的下标,R[[i]:从右往左最接近的因子下标,a[i]在这个区间内都是可以的那么总共的种类区间有(i - L[i]) * (R[i] - i) 总复杂度O(n根号n) 用index数组来记录该因子出现的位置 */ #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const int MAX = 100000 + 10; const int mod = 1e9 + 7; int a[MAX]; int L[MAX], R[MAX], index[MAX]; int main() { int n; while(~scanf("%d", &n)){ for(int i = 1; i <= n; i++) scanf("%d", &a[i]); memset(index, -1, sizeof(index)); for(int i = 1; i <= n; i++){ int temp = sqrt(1.0 * a[i]); int l = 0; for(int j = 1; j <= temp; j++){ if(a[i] % j == 0){ if(index[j] != -1) l = max(index[j], l); if(index[a[i] / j] != -1) l = max(index[a[i] / j], l); } } index[a[i]] = i; L[i] = l; } memset(index, -1, sizeof(index)); for(int i = n; i >= 1 ;i--){ int temp = sqrt(1.0 * a[i]); int r = n + 1; for(int j = 1; j <= temp; j++){ if(a[i] % j == 0){ if(index[j] != -1) r = min(index[j], r); if(index[a[i] / j] != -1) r = min(index[a[i] / j], r); } } index[a[i]] = i; R[i] = r; } int l1, r1; int sum = 0; for(int i = 1; i <= n; i++){ l1 = i - L[i], r1 = R[i] - i ; sum = (l1 * r1 % mod + sum) % mod; } printf("%d\n", sum); } return 0; }