HDU1024——DP——Max Sum Plus Plus

Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
 

 

Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 

 

Output
Output the maximal summation described above in one line.
 

 

Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 

 

Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
 

 

Author
JGShining(极光炫影)
 

 

Recommend
We have carefully selected several similar problems for you:  1074 1025 1081 1080 1160 
大意:主要是降低复杂度,问给你m个数要可以分成n块连续的数,问最大和是多少
定义dp[i][j]表示当前这个数为i,已经分了j块
可以转来的方向  1.块数不动多一个数   2.块数动了多一个数
动态转移方程  dp[i][j] = max(dp[i-1][j]+a[i],max(dp[1][j-1].....dp[i-1][j-1])+a[i]))
bing神代码好流弊。。定义一个数组记录前面一个块的前j-1中最大的值
那么最后答案就是这个max2(分成n组时1到j中最大的值
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
int dp[maxn];
int a[maxn],max1[maxn];
int main()
{
    int n,m;
    int max2;
    while(~scanf("%d%d",&n,&m)){
        for(int i = 1; i <= m ;i++)
            scanf("%d",&a[i]);
        memset(dp,0,sizeof(dp));
        memset(max1,0,sizeof(max1));
        for(int i = 1; i <= n; i++){
             max2 = -inf;
            for(int j = i; j <= m; j++){
                   dp[j] = max(dp[j-1]+a[j],max1[j-1]+a[j]);
                   max1[j-1] = max2;
                   max2 = max(max2,dp[j]);
            }
        }
        printf("%d\n",max2);
    }
    return 0;
}

  

posted @ 2015-05-22 19:50  Painting、时光  阅读(127)  评论(0编辑  收藏  举报