BestCoder Round #33——1002——zhx's contest
问题描述
作为史上最强的刷子之一,zhx的老师让他给学弟(mei)们出n道题。
zhx认为第i道题的难度就是i。他想要让这些题目排列起来很漂亮。
zhx认为一个漂亮的序列{ai}下列两个条件均需满足。
1:a1..ai是单调递减或者单调递增的。
2:ai..an是单调递减或者单调递增的。
他想你告诉他有多少种排列是漂亮的。
因为答案很大,所以只需要输出答案模p之后的值。
输入描述
多组数据(不多于1000组)。读到文件尾。
每组数据包含一行两个整数n和p。(1≤n,p≤1018)
输出描述
每组数据输出一行一个非负整数表示答案。
输入样例
2 233 3 5
输出样例
2 1
Hint
第一组数据中{1, 2}和{2, 1}合法。 第二组数据中{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}都合法,所以答案是6 mod 5 = 1。
大意:先用数学公式得出2的n次-2(ai肯定为最小或者最大,那么其他数就放在他的左边或者右边,因为一旦放下顺序就确定了所以n-1个数排列就是2的n-1次,再乘以二减去重复的两个全顺排和全逆排就是答案,用快速幂求出答案,不然溢出,快速幂由快速乘法得到,快速乘法又加法得到。
算是模板题目,a&1是指取a二进制的末位 >>1是指向右移一位
#include<iostream> #include<cstring> #include<algorithm> #include<cmath> #include<cstdio> using namespace std; typedef long long ll; ll mod; ll mul(ll a, ll b) { ll ans = 0; while(b){ if(b&1) ans = (ans+a)%mod; a = (a+a)%mod; b >>= 1; } return ans; } ll pow(ll a, ll b) { ll ans = 1; while(b){ if(b&1) ans = mul(ans,a); a = mul(a, a); b >>= 1; } return ans; } int main() { ll n; while(~scanf("%lld%lld",&n,&mod)) { if(n == 1) printf("%lld\n",n%mod); else printf("%lld\n",((pow(2ll,n)-2)+mod)%mod); } return 0; }