一致性Hash算法在数据库分表中的实践

最近有一个项目,其中某个功能单表数据在可预估的未来达到了亿级,初步估算在90亿左右。与同事详细讨论后,决定采用一致性Hash算法来完成数据库的自动扩容和数据迁移。整个程序细节由我同事完成,我只是将其理解并成文,供有相同问题的同行参考。

参看此文的兄弟,默认各位已经熟悉一致性hash算法了。此文仅仅阐述代码细节,实现语言为Java

项目背景

  1. 项目是一个实验室项目
  2. 其中有一个表叫做试验表,用于存储车型的试验数据,每个试验大概有6000条数据
  3. 总计初期约有2万个车型,每个车型初期包含超过50个试验。后期还会动态增长
  4. 试验表中的数据仅需要根据车型试验ID能取出来即可,没有其他更复杂的业务逻辑

方案决策

项目正式上线初期,数据量不会直接爆发式增长到90亿,需要时间上的积累(逐步做实验),最终可能达到90亿数据,甚至超过90亿数据。

按照我们实际了解情况,oracle存储数据量达到1千万的时候,性能擅可。而Oracle官方的说法,如单表存储1g有分区(大致500万数据),查询效率非常高。而试验表中仅四个字段,每条数据数据量较小。所以我们最终决定以1000万为节点,水平拆表。当表数据达到1千万时,即增加下一波表。进行数据自动迁移。

按照90亿的总量,1000万数据一个表的划分,最终大致会产生900个左右的表。所以我们最终使用了4个数据库。1个存储其他业务模块的表,3个存储此大数据表。每个数据库大致有300张表。性能上和数量上都可达到我们的要求。

相关表结构

试验信息表(EXPERIMENT_MESSAGE),挂接车型和试验的关系。试验数据表(EXPERIMENT_DATA),存储试验数据

试验信息表:

字段 含义
ID 主键,采用UUID生成
EXPERIMENT_ID 试验表中的ID
CAR_ID 车型表中的ID
... 其余数十个字段省略

试验数据表:

字段 含义
ID 主键,采用UUID生成
EXPERIMENT_MESSAGE_ID 对应的实验信息id
X_VALUE 试验数据X值
Y_VALUE 试验数据Y值

我们采用作一致性hash的key,就是试验数据表中的EXPERIMENT_MESSAGE_ID字段。也就是说,每个试验数据表,不存则以,存则一次性大致有6000条数据。取同理。

一致性Hash算法实现

一致性Hash算法的hash部分,采用了著名的ketama算法。在此,我们不多讨论ketama算法的细节,若各位有兴趣,请查阅ketama算法

    public long hash(String key) {
        if (md5 == null) {
            try {
                md5 = MessageDigest.getInstance("MD5");
            } catch (NoSuchAlgorithmException e) {
                throw new IllegalStateException("no md5 algorythm found");
            }
        }

        md5.reset();
        md5.update(key.getBytes());
        byte[] bKey = md5.digest();

        long res = ((long) (bKey[3] & 0xFF) << 24) | 
                         ((long) (bKey[2] & 0xFF) << 16) | 
                         ((long) (bKey[1] & 0xFF) << 8) | 
                         (long) (bKey[0] & 0xFF);
        return res & 0xffffffffL;
    }

有了Hash的算法,接下来就要构造Hash环了。Hash环采用的SortedMap数据结构实现。

private final SortedMap<Long, T> circle = new TreeMap<Long, T>();

其中添加节点和移除节点部分,需要根据hash算法得到节点在环上的位置,具体代码如下:

    /**
     * 添加虚拟节点
     * numberOfReplicas为虚拟节点的数量,初始化hash环的时候传入,我们使用300个虚拟节点
     * @param node
     */
    public void add(T node) {
        for (int i = 0; i < numberOfReplicas; i++) {
            circle.put(hashFunction.hash(node.toString() + i), node);
        }
    }

    /**
     * 移除节点
     * @param node
     */
    public void remove(T node) {
        for (int i = 0; i < numberOfReplicas; i++) {
            circle.remove(hashFunction.hash(node.toString() + i));
        }
    }

而hash环中得到节点部分比较特殊,根据一致性hash算法的介绍,得到hash环中的节点,实际上是计算出的hash值顺时针找到的第一个节点。

     /**
     * 获得一个最近的顺时针节点
     * @param key 为给定键取Hash,取得顺时针方向上最近的一个虚拟节点对应的实际节点
     * @return
     */
    public T get(Object key) {
        if (circle.isEmpty()) {
            return null;
        }
        long hash = hashFunction.hash((String) key);
        if (!circle.containsKey(hash)) {
            //返回此映射的部分视图,其键大于等于 hash
            SortedMap<Long, T> tailMap = circle.tailMap(hash); 
            hash = tailMap.isEmpty() ? circle.firstKey() : tailMap.firstKey();
        }
        return circle.get(hash);
    }

单表拆分实践

上面完成了一致性hash算法的实现,包含了hash算法和hash环的实现。接下来就要处理具体业务中,如何使用这个hash环和算法了。

我们业务中,主要操作这张表的数据,也就是增删查。然后我们数据库拆分成了3个,所以需要增删查的操作基本一致,都是先通过一致性hash得到库,再通过一致性hash得到表。

获取数据库名的操作如下,获取到数据库后,根据数据库名到对应的连接池中获取连接。

    /**
     * 根据试验信息id获取其所在库名
     * DatabaseType为我们数据的枚举
     * @return 数据库的名称
     **/
    private String getDataBase(String experimentMessageId) {
        //获取数据源
        DatabaseType[] databasetype = DatabaseType.values();
        List<String> dataBaselist = new ArrayList<>();
        Map<String, DatabaseType> map = new HashMap<>();

        for (DatabaseType d:databasetype) {
            if (!d.equals(DatabaseType.KC)) {
                dataBaselist.add(d.toString());
                map.put(d.toString(), d);
            }
        }
        //获取数据源hash
        ConsistentHash<String> dataBaseCon = getConsistentHash(dataBaselist);

        //获取id所在数据源
        String dataBase = dataBaseCon.get(experimentMessageId);
        return dataBase;
    }

获取表名的操作如下,获取到数据库后,在对应的数据库中找到需要的表,再从该表中查询数据。

    /**
     * 根据试验信息id获取其试验数据所在表
     * @return
     **/
    public String getTableName(String experimentMessageId) {
        String dataBase = getDataBase(experimentMessageId);
        //查询所有试验数据表
        List<String> tables = experimentDataEODao.queryTbaleNames(dataBase, tableName);
        ConsistentHash<String> consistentHash = getConsistentHash(tables);
        String tableName = consistentHash.get(experimentMessageId);
        return tableName;
    }

剩下的增删改操作和平常一致,在此不多赘述。

数据迁移实践

一致性hash势必涉及到数据迁移问题,我们采取的数据迁移方式为定时任务,针对每个数据库在每天夜里全量扫描一次。检查是否有数据量超过1000万的表,若存在这样的表,就把现有的表数量double。
数据迁移只会在同库之间迁移,不会涉及跨数据库的情况。
此方案为初步方案,后续会改进的更加智能,根据表的数量,增加不同数量的表。而不是简单的把表数量翻倍。
表创建后,将需要迁移的表数据逐个迁移。

在连接到数据源后,我们做了如下事情进行数据迁移
1.获取库中所有的表

 List<String> tables = getTables(connection, p, d.toString());

2.遍历表,检查表中数据是否超过边界线(我们为1000万)

 for (int i = 0; i < tables.size(); i++) {
    //查询表内数据量
    int num = countByTableName(connection, p, tables.get(i));
    //finalNum为边界值,此处为1000万
    if (num > finalNum) {
        ……
    }
    ……
}

3.根据所有的表计算现有的虚拟节点

ConsistentHash<String> consistentHashOld = getConsistentHash(tables);

4.把表加倍

List<String> tablesNew = deepCopy(tables); //注意一定要采用深复制
int tableSize = tablesNew.size();
for (int y = 0; y < tableSize; y++) {
    String tableNameNew = tableName + (tablesNew.size() + 1);
    //创建表
    createTable(connection, p, d.toString(), tableNameNew);
    tablesNew.add(tableNameNew);
    tableDelete.add(tableNameNew);
}

5.计算加倍后的虚拟节点

ConsistentHash<String> consistentHashNew = getConsistentHash(tablesNew);

6.数据迁移

for (int z = 0; z < tableSize; z++) {
    String tableNameOld = tablesNew.get(z);
    //查询试验信息id不重复的试验数据信息
    List<String> disData = selectExperimentIdDis(connection, p, tableNameOld);
    List<String> deleteList = new LinkedList<>();
    for (String experimentId : disData) {
        //如果数据hash计算 原所在表与新建表之后不一致,执行转移
        if (!consistentHashNew.get(experimentId).equals(consistentHashOld.get(experimentId))) {

            //新增到新表数据
            insertHash(connection, p, experimentId, consistentHashOld.get(experimentId),
            consistentHashNew.get(experimentId));

            //删除数据集合
            deleteList.add(experimentId);
            //删除旧表数据
            final int defaultDelNum = 1000;
            if (deleteList.size() == defaultDelNum) {
                deleteInbatch(connection, p, deleteList, tableNameOld);
                deleteList.clear();
            }
        }
    }

    //删除旧表数据
    if (deleteList.size() > 0) {
        deleteInbatch(connection, p, deleteList, tableNameOld);
    }
}

总结

以上为我们所做的一致性hash实践,其中还存在很多问题,比如迁移过程单线程导致迁移较慢、自动扩容机制不智能、迁移过程中数据访问不稳定等情况。

我们将会在后续的开发中逐步进行完善改进。

以上就是我们针对一致性hash在oracle分表中的实践

参考

一致性哈希算法原理
ketama算法

posted @ 2018-09-17 10:19  锅总的程序人生  阅读(8340)  评论(7编辑  收藏  举报