Image Classification

 

 

 

 

Image Classification

In this project, you'll classify images from the CIFAR-10 dataset. The dataset consists of airplanes, dogs, cats, and other objects. You'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded. You'll get to apply what you learned and build a convolutional, max pooling, dropout, and fully connected layers. At the end, you'll get to see your neural network's predictions on the sample images.

Get the Data

Run the following cell to download the CIFAR-10 dataset for python.

In [1]:
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm
import problem_unittests as tests
import tarfile

cifar10_dataset_folder_path = 'cifar-10-batches-py'

# Use Floyd's cifar-10 dataset if present
floyd_cifar10_location = '/input/cifar-10/python.tar.gz'
if isfile(floyd_cifar10_location):
    tar_gz_path = floyd_cifar10_location
else:
    tar_gz_path = 'cifar-10-python.tar.gz'

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile(tar_gz_path):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
        urlretrieve(
            'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
            tar_gz_path,
            pbar.hook)

if not isdir(cifar10_dataset_folder_path):
    with tarfile.open(tar_gz_path) as tar:
        tar.extractall()
        tar.close()


tests.test_folder_path(cifar10_dataset_folder_path)
 
CIFAR-10 Dataset: 171MB [09:36, 296KB/s]                               
 
All files found!
 

Explore the Data

The dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named data_batch_1, data_batch_2, etc.. Each batch contains the labels and images that are one of the following:

  • airplane
  • automobile
  • bird
  • cat
  • deer
  • dog
  • frog
  • horse
  • ship
  • truck

Understanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the batch_id and sample_id. The batch_id is the id for a batch (1-5). The sample_id is the id for a image and label pair in the batch.

Ask yourself "What are all possible labels?", "What is the range of values for the image data?", "Are the labels in order or random?". Answers to questions like these will help you preprocess the data and end up with better predictions.

In [2]:
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import helper
import numpy as np

# Explore the dataset
batch_id = 1
sample_id = 5
helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id)
 
Stats of batch 1:
Samples: 10000
Label Counts: {0: 1005, 1: 974, 2: 1032, 3: 1016, 4: 999, 5: 937, 6: 1030, 7: 1001, 8: 1025, 9: 981}
First 20 Labels: [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6]

Example of Image 5:
Image - Min Value: 0 Max Value: 252
Image - Shape: (32, 32, 3)
Label - Label Id: 1 Name: automobile
 
 

Implement Preprocess Functions

Normalize

In the cell below, implement the normalize function to take in image data, x, and return it as a normalized Numpy array. The values should be in the range of 0 to 1, inclusive. The return object should be the same shape as x.

In [3]:
def normalize(x):
    """
    Normalize a list of sample image data in the range of 0 to 1
    : x: List of image data.  The image shape is (32, 32, 3)
    : return: Numpy array of normalize data
    """
    # TODO: Implement Function
    n = x/np.max(x)-np.min(x)
    return n


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_normalize(normalize)
 
Tests Passed
 

One-hot encode

Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the one_hot_encode function. The input, x, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to one_hot_encode. Make sure to save the map of encodings outside the function.

Hint: Don't reinvent the wheel.

In [4]:
def one_hot_encode(x):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
    """
    # TODO: Implement Function
    targets = np.array(x).reshape(-1)
    one_hot_targets = np.eye(10)[targets]
    return one_hot_targets


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_one_hot_encode(one_hot_encode)
 
Tests Passed
 

Randomize Data

As you saw from exploring the data above, the order of the samples are randomized. It doesn't hurt to randomize it again, but you don't need to for this dataset.

 

Preprocess all the data and save it

Running the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation.

In [5]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
# Preprocess Training, Validation, and Testing Data
helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)
 

Check Point

This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.

In [6]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import pickle
import problem_unittests as tests
import helper

# Load the Preprocessed Validation data
valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))
 

Build the network

For the neural network, you'll build each layer into a function. Most of the code you've seen has been outside of functions. To test your code more thoroughly, we require that you put each layer in a function. This allows us to give you better feedback and test for simple mistakes using our unittests before you submit your project.

Note: If you're finding it hard to dedicate enough time for this course each week, we've provided a small shortcut to this part of the project. In the next couple of problems, you'll have the option to use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages to build each layer, except the layers you build in the "Convolutional and Max Pooling Layer" section. TF Layers is similar to Keras's and TFLearn's abstraction to layers, so it's easy to pickup.

However, if you would like to get the most out of this course, try to solve all the problems without using anything from the TF Layers packages. You can still use classes from other packages that happen to have the same name as ones you find in TF Layers! For example, instead of using the TF Layers version of the conv2d class, tf.layers.conv2d, you would want to use the TF Neural Network version of conv2d, tf.nn.conv2d.

Let's begin!

Input

The neural network needs to read the image data, one-hot encoded labels, and dropout keep probability. Implement the following functions

  • Implement neural_net_image_input
    • Return a TF Placeholder
    • Set the shape using image_shape with batch size set to None.
    • Name the TensorFlow placeholder "x" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_label_input
    • Return a TF Placeholder
    • Set the shape using n_classes with batch size set to None.
    • Name the TensorFlow placeholder "y" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_keep_prob_input
    • Return a TF Placeholder for dropout keep probability.
    • Name the TensorFlow placeholder "keep_prob" using the TensorFlow name parameter in the TF Placeholder.

These names will be used at the end of the project to load your saved model.

Note: None for shapes in TensorFlow allow for a dynamic size.

In [10]:
import tensorflow as tf

def neural_net_image_input(image_shape):
    """
    Return a Tensor for a bach of image input
    : image_shape: Shape of the images
    : return: Tensor for image input.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32, shape=[None, image_shape[0], image_shape[1], image_shape[2]], name='x')


def neural_net_label_input(n_classes):
    """
    Return a Tensor for a batch of label input
    : n_classes: Number of classes
    : return: Tensor for label input.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32, shape=[None, n_classes], name='y')


def neural_net_keep_prob_input():
    """
    Return a Tensor for keep probability
    : return: Tensor for keep probability.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32, name='keep_prob')


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tf.reset_default_graph()
tests.test_nn_image_inputs(neural_net_image_input)
tests.test_nn_label_inputs(neural_net_label_input)
tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input)
 
Image Input Tests Passed.
Label Input Tests Passed.
Keep Prob Tests Passed.
 

Convolution and Max Pooling Layer

Convolution layers have a lot of success with images. For this code cell, you should implement the function conv2d_maxpool to apply convolution then max pooling:

  • Create the weight and bias using conv_ksize, conv_num_outputs and the shape of x_tensor.
  • Apply a convolution to x_tensor using weight and conv_strides.
    • We recommend you use same padding, but you're welcome to use any padding.
  • Add bias
  • Add a nonlinear activation to the convolution.
  • Apply Max Pooling using pool_ksize and pool_strides.
    • We recommend you use same padding, but you're welcome to use any padding.

Note: You can't use TensorFlow Layers or TensorFlow Layers (contrib) for this layer, but you can still use TensorFlow's Neural Network package. You may still use the shortcut option for all the other layers.

In [14]:
def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides):
    """
    Apply convolution then max pooling to x_tensor
    :param x_tensor: TensorFlow Tensor
    :param conv_num_outputs: Number of outputs for the convolutional layer
    :param conv_ksize: kernal size 2-D Tuple for the convolutional layer
    :param conv_strides: Stride 2-D Tuple for convolution
    :param pool_ksize: kernal size 2-D Tuple for pool
    :param pool_strides: Stride 2-D Tuple for pool
    : return: A tensor that represents convolution and max pooling of x_tensor
    """
    # TODO: Implement Function
    weight = tf.Variable(tf.truncated_normal([conv_ksize[0], conv_ksize[1], int(x_tensor.get_shape()[3]), conv_num_outputs],stddev=0.1))
    bias = tf.Variable(tf.zeros(conv_num_outputs))
    conv_layer = tf.nn.conv2d(x_tensor, weight, [1, conv_strides[0], conv_strides[1], 1], padding='SAME')
    conv_layer = tf.nn.bias_add(conv_layer, bias)
    conv_layer = tf.nn.relu(conv_layer)
    conv_layer = tf.nn.max_pool(conv_layer,
                                ksize=[1, pool_ksize[0], pool_ksize[1], 1],
                                strides=[1, pool_strides[0], pool_strides[1], 1],
                                padding='SAME')                      
                                                                                        
    return conv_layer 


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_con_pool(conv2d_maxpool)
 
Tests Passed
 

Flatten Layer

Implement the flatten function to change the dimension of x_tensor from a 4-D tensor to a 2-D tensor. The output should be the shape (Batch Size, Flattened Image Size). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.

In [15]:
def flatten(x_tensor):
    """
    Flatten x_tensor to (Batch Size, Flattened Image Size)
    : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions.
    : return: A tensor of size (Batch Size, Flattened Image Size).
    """
    # TODO: Implement Function
    input = int(x_tensor.get_shape()[1])*int(x_tensor.get_shape()[2])*int(x_tensor.get_shape()[3])
    x_flatten = tf.reshape(x_tensor, [-1, input])
    return x_flatten


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_flatten(flatten)
 
Tests Passed
 

Fully-Connected Layer

Implement the fully_conn function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.

In [16]:
def fully_conn(x_tensor, num_outputs):
    """
    Apply a fully connected layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # TODO: Implement Function
    return tf.contrib.layers.fully_connected(x_tensor, num_outputs)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_fully_conn(fully_conn)
 
Tests Passed
 

Output Layer

Implement the output function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.

Note: Activation, softmax, or cross entropy should not be applied to this.

In [19]:
def output(x_tensor, num_outputs):
    """
    Apply a output layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # TODO: Implement Function
    input_shape = int(x_tensor.shape[1])
    weight = tf.Variable(tf.truncated_normal([input_shape, num_outputs],stddev=0.1))
    bias = tf.Variable(tf.truncated_normal([num_outputs], stddev=0.1))
    out = tf.add(tf.matmul(x_tensor, weight), bias)
    return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_output(output)
 
Tests Passed
 

Create Convolutional Model

Implement the function conv_net to create a convolutional neural network model. The function takes in a batch of images, x, and outputs logits. Use the layers you created above to create this model:

  • Apply 1, 2, or 3 Convolution and Max Pool layers
  • Apply a Flatten Layer
  • Apply 1, 2, or 3 Fully Connected Layers
  • Apply an Output Layer
  • Return the output
  • Apply TensorFlow's Dropout to one or more layers in the model using keep_prob.
In [20]:
def conv_net(x, keep_prob):
    """
    Create a convolutional neural network model
    : x: Placeholder tensor that holds image data.
    : keep_prob: Placeholder tensor that hold dropout keep probability.
    : return: Tensor that represents logits
    """
    # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers
    #    Play around with different number of outputs, kernel size and stride
    # Function Definition from Above:
    #    conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)
    layer1 = conv2d_maxpool(x, 32, (3, 3), (1,1), (2,2), (2,2))
    layer2 = conv2d_maxpool(layer1, 64, (3,3), (1,1), (2,2), (2,2))
    layer2 = tf.nn.dropout(layer2, keep_prob)

    # TODO: Apply a Flatten Layer
    # Function Definition from Above:
    #   flatten(x_tensor)
    flatten_layer = flatten(layer2)

    # TODO: Apply 1, 2, or 3 Fully Connected Layers
    #    Play around with different number of outputs
    # Function Definition from Above:
    #   fully_conn(x_tensor, num_outputs)
    fc1 = fully_conn(flatten_layer, 512)
    fc2 = fully_conn(fc1, 256)
    fc2 = tf.nn.dropout(fc2, keep_prob)
    
    # TODO: Apply an Output Layer
    #    Set this to the number of classes
    # Function Definition from Above:
    #   output(x_tensor, num_outputs)
    output_layer = output(fc2, 10)
    
    # TODO: return output
    return output_layer


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""

##############################
## Build the Neural Network ##
##############################

# Remove previous weights, bias, inputs, etc..
tf.reset_default_graph()

# Inputs
x = neural_net_image_input((32, 32, 3))
y = neural_net_label_input(10)
keep_prob = neural_net_keep_prob_input()

# Model
logits = conv_net(x, keep_prob)

# Name logits Tensor, so that is can be loaded from disk after training
logits = tf.identity(logits, name='logits')

# Loss and Optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')

tests.test_conv_net(conv_net)
 
Neural Network Built!
 

Train the Neural Network

Single Optimization

Implement the function train_neural_network to do a single optimization. The optimization should use optimizer to optimize in session with a feed_dict of the following:

  • x for image input
  • y for labels
  • keep_prob for keep probability for dropout

This function will be called for each batch, so tf.global_variables_initializer() has already been called.

Note: Nothing needs to be returned. This function is only optimizing the neural network.

In [21]:
def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):
    """
    Optimize the session on a batch of images and labels
    : session: Current TensorFlow session
    : optimizer: TensorFlow optimizer function
    : keep_probability: keep probability
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    """
    # TODO: Implement Function
    train_feed_dict = {x: feature_batch,
                       y: label_batch,
                       keep_prob: keep_probability}
    session.run(optimizer, feed_dict=train_feed_dict)
    # pass


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_train_nn(train_neural_network)
 
Tests Passed
 

Show Stats

Implement the function print_stats to print loss and validation accuracy. Use the global variables valid_features and valid_labels to calculate validation accuracy. Use a keep probability of 1.0 to calculate the loss and validation accuracy.

In [22]:
def print_stats(session, feature_batch, label_batch, cost, accuracy):
    """
    Print information about loss and validation accuracy
    : session: Current TensorFlow session
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    : cost: TensorFlow cost function
    : accuracy: TensorFlow accuracy function
    """
    # TODO: Implement Function
    current_cost = session.run(
        cost,
        feed_dict={x: feature_batch, y: label_batch, keep_prob: 1.0})
    valid_accuracy = session.run(
        accuracy,
        feed_dict={x: valid_features, y: valid_labels, keep_prob: 1.0})
    print('Cost: {}, Valid Accuracy: {}'.format(current_cost, valid_accuracy))
    # pass
 

Hyperparameters

Tune the following parameters:

  • Set epochs to the number of iterations until the network stops learning or start overfitting
  • Set batch_size to the highest number that your machine has memory for. Most people set them to common sizes of memory:
    • 64
    • 128
    • 256
    • ...
  • Set keep_probability to the probability of keeping a node using dropout
In [23]:
# TODO: Tune Parameters
epochs = 25
batch_size = 512
keep_probability = 0.7
 

Train on a Single CIFAR-10 Batch

Instead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch. This should save time while you iterate on the model to get a better accuracy. Once the final validation accuracy is 50% or greater, run the model on all the data in the next section.

In [24]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
print('Checking the Training on a Single Batch...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        batch_i = 1
        for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
            train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
        print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
        print_stats(sess, batch_features, batch_labels, cost, accuracy)
 
Checking the Training on a Single Batch...
Epoch  1, CIFAR-10 Batch 1:  Cost: 1.981543779373169, Valid Accuracy: 0.2962000072002411
Epoch  2, CIFAR-10 Batch 1:  Cost: 1.6893121004104614, Valid Accuracy: 0.41019997000694275
Epoch  3, CIFAR-10 Batch 1:  Cost: 1.5307731628417969, Valid Accuracy: 0.4501999616622925
Epoch  4, CIFAR-10 Batch 1:  Cost: 1.3871300220489502, Valid Accuracy: 0.49219998717308044
Epoch  5, CIFAR-10 Batch 1:  Cost: 1.267615556716919, Valid Accuracy: 0.5067999362945557
Epoch  6, CIFAR-10 Batch 1:  Cost: 1.1795060634613037, Valid Accuracy: 0.520799994468689
Epoch  7, CIFAR-10 Batch 1:  Cost: 1.070376992225647, Valid Accuracy: 0.5381999611854553
Epoch  8, CIFAR-10 Batch 1:  Cost: 0.9885929226875305, Valid Accuracy: 0.5531999468803406
Epoch  9, CIFAR-10 Batch 1:  Cost: 0.9121658802032471, Valid Accuracy: 0.5575999617576599
Epoch 10, CIFAR-10 Batch 1:  Cost: 0.8275613784790039, Valid Accuracy: 0.5671999454498291
Epoch 11, CIFAR-10 Batch 1:  Cost: 0.7708795666694641, Valid Accuracy: 0.5655999183654785
Epoch 12, CIFAR-10 Batch 1:  Cost: 0.6988260746002197, Valid Accuracy: 0.5813998579978943
Epoch 13, CIFAR-10 Batch 1:  Cost: 0.6681018471717834, Valid Accuracy: 0.5793999433517456
Epoch 14, CIFAR-10 Batch 1:  Cost: 0.6030067205429077, Valid Accuracy: 0.585599958896637
Epoch 15, CIFAR-10 Batch 1:  Cost: 0.5603825449943542, Valid Accuracy: 0.5957999229431152
Epoch 16, CIFAR-10 Batch 1:  Cost: 0.5022317171096802, Valid Accuracy: 0.5995999574661255
Epoch 17, CIFAR-10 Batch 1:  Cost: 0.43543699383735657, Valid Accuracy: 0.6051998734474182
Epoch 18, CIFAR-10 Batch 1:  Cost: 0.3899790644645691, Valid Accuracy: 0.6127999424934387
Epoch 19, CIFAR-10 Batch 1:  Cost: 0.35729077458381653, Valid Accuracy: 0.6167998909950256
Epoch 20, CIFAR-10 Batch 1:  Cost: 0.32928287982940674, Valid Accuracy: 0.6177998781204224
Epoch 21, CIFAR-10 Batch 1:  Cost: 0.31080135703086853, Valid Accuracy: 0.6095998883247375
Epoch 22, CIFAR-10 Batch 1:  Cost: 0.2679688036441803, Valid Accuracy: 0.6147998571395874
Epoch 23, CIFAR-10 Batch 1:  Cost: 0.20786641538143158, Valid Accuracy: 0.6205999255180359
Epoch 24, CIFAR-10 Batch 1:  Cost: 0.2318623661994934, Valid Accuracy: 0.6075999140739441
Epoch 25, CIFAR-10 Batch 1:  Cost: 0.17443916201591492, Valid Accuracy: 0.6247999668121338
 

Fully Train the Model

Now that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches.

In [25]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
save_model_path = './image_classification'

print('Training...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        # Loop over all batches
        n_batches = 5
        for batch_i in range(1, n_batches + 1):
            for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
                train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
            print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
            print_stats(sess, batch_features, batch_labels, cost, accuracy)
            
    # Save Model
    saver = tf.train.Saver()
    save_path = saver.save(sess, save_model_path)
 
Training...
Epoch  1, CIFAR-10 Batch 1:  Cost: 1.832273244857788, Valid Accuracy: 0.36539995670318604
Epoch  1, CIFAR-10 Batch 2:  Cost: 1.5143165588378906, Valid Accuracy: 0.4235999584197998
Epoch  1, CIFAR-10 Batch 3:  Cost: 1.3797259330749512, Valid Accuracy: 0.4487999677658081
Epoch  1, CIFAR-10 Batch 4:  Cost: 1.3267163038253784, Valid Accuracy: 0.48799997568130493
Epoch  1, CIFAR-10 Batch 5:  Cost: 1.3325960636138916, Valid Accuracy: 0.5231999158859253
Epoch  2, CIFAR-10 Batch 1:  Cost: 1.2991366386413574, Valid Accuracy: 0.5453999638557434
Epoch  2, CIFAR-10 Batch 2:  Cost: 1.164091944694519, Valid Accuracy: 0.5565999746322632
Epoch  2, CIFAR-10 Batch 3:  Cost: 1.0475447177886963, Valid Accuracy: 0.5653999447822571
Epoch  2, CIFAR-10 Batch 4:  Cost: 1.049081802368164, Valid Accuracy: 0.5799999237060547
Epoch  2, CIFAR-10 Batch 5:  Cost: 1.03753662109375, Valid Accuracy: 0.5969999432563782
Epoch  3, CIFAR-10 Batch 1:  Cost: 1.0934979915618896, Valid Accuracy: 0.5921999216079712
Epoch  3, CIFAR-10 Batch 2:  Cost: 0.9676773548126221, Valid Accuracy: 0.6107999086380005
Epoch  3, CIFAR-10 Batch 3:  Cost: 0.9072970747947693, Valid Accuracy: 0.6065999269485474
Epoch  3, CIFAR-10 Batch 4:  Cost: 0.8752695918083191, Valid Accuracy: 0.6267998814582825
Epoch  3, CIFAR-10 Batch 5:  Cost: 0.8745278120040894, Valid Accuracy: 0.6309998631477356
Epoch  4, CIFAR-10 Batch 1:  Cost: 0.914341926574707, Valid Accuracy: 0.6329998970031738
Epoch  4, CIFAR-10 Batch 2:  Cost: 0.8334460258483887, Valid Accuracy: 0.6429998874664307
Epoch  4, CIFAR-10 Batch 3:  Cost: 0.7674638032913208, Valid Accuracy: 0.6335999369621277
Epoch  4, CIFAR-10 Batch 4:  Cost: 0.7472399473190308, Valid Accuracy: 0.6581999063491821
Epoch  4, CIFAR-10 Batch 5:  Cost: 0.770847737789154, Valid Accuracy: 0.6523998975753784
Epoch  5, CIFAR-10 Batch 1:  Cost: 0.819602906703949, Valid Accuracy: 0.6605998873710632
Epoch  5, CIFAR-10 Batch 2:  Cost: 0.7362581491470337, Valid Accuracy: 0.6599998474121094
Epoch  5, CIFAR-10 Batch 3:  Cost: 0.6552530527114868, Valid Accuracy: 0.6613999009132385
Epoch  5, CIFAR-10 Batch 4:  Cost: 0.6550571322441101, Valid Accuracy: 0.6705998182296753
Epoch  5, CIFAR-10 Batch 5:  Cost: 0.6357465982437134, Valid Accuracy: 0.6775999069213867
Epoch  6, CIFAR-10 Batch 1:  Cost: 0.7695267200469971, Valid Accuracy: 0.6613999009132385
Epoch  6, CIFAR-10 Batch 2:  Cost: 0.6776818633079529, Valid Accuracy: 0.6555998921394348
Epoch  6, CIFAR-10 Batch 3:  Cost: 0.5864536762237549, Valid Accuracy: 0.6739998459815979
Epoch  6, CIFAR-10 Batch 4:  Cost: 0.5943570733070374, Valid Accuracy: 0.6749998331069946
Epoch  6, CIFAR-10 Batch 5:  Cost: 0.565223217010498, Valid Accuracy: 0.6917998790740967
Epoch  7, CIFAR-10 Batch 1:  Cost: 0.6281090378761292, Valid Accuracy: 0.6915998458862305
Epoch  7, CIFAR-10 Batch 2:  Cost: 0.6264783143997192, Valid Accuracy: 0.6697998642921448
Epoch  7, CIFAR-10 Batch 3:  Cost: 0.5280745029449463, Valid Accuracy: 0.6797998547554016
Epoch  7, CIFAR-10 Batch 4:  Cost: 0.5057480335235596, Valid Accuracy: 0.6909998655319214
Epoch  7, CIFAR-10 Batch 5:  Cost: 0.4861595332622528, Valid Accuracy: 0.6975998282432556
Epoch  8, CIFAR-10 Batch 1:  Cost: 0.5630429983139038, Valid Accuracy: 0.6789999008178711
Epoch  8, CIFAR-10 Batch 2:  Cost: 0.533102810382843, Valid Accuracy: 0.6909998655319214
Epoch  8, CIFAR-10 Batch 3:  Cost: 0.4442758560180664, Valid Accuracy: 0.6945998668670654
Epoch  8, CIFAR-10 Batch 4:  Cost: 0.45804768800735474, Valid Accuracy: 0.6869999170303345
Epoch  8, CIFAR-10 Batch 5:  Cost: 0.4137130379676819, Valid Accuracy: 0.7059998512268066
Epoch  9, CIFAR-10 Batch 1:  Cost: 0.49841877818107605, Valid Accuracy: 0.7017998695373535
Epoch  9, CIFAR-10 Batch 2:  Cost: 0.5053462386131287, Valid Accuracy: 0.7011998891830444
Epoch  9, CIFAR-10 Batch 3:  Cost: 0.3799095153808594, Valid Accuracy: 0.6995999217033386
Epoch  9, CIFAR-10 Batch 4:  Cost: 0.3840067982673645, Valid Accuracy: 0.703799843788147
Epoch  9, CIFAR-10 Batch 5:  Cost: 0.3727177381515503, Valid Accuracy: 0.6965998411178589
Epoch 10, CIFAR-10 Batch 1:  Cost: 0.4027259945869446, Valid Accuracy: 0.7155999541282654
Epoch 10, CIFAR-10 Batch 2:  Cost: 0.45052188634872437, Valid Accuracy: 0.6981998682022095
Epoch 10, CIFAR-10 Batch 3:  Cost: 0.33553263545036316, Valid Accuracy: 0.7011998891830444
Epoch 10, CIFAR-10 Batch 4:  Cost: 0.3330621123313904, Valid Accuracy: 0.7057998776435852
Epoch 10, CIFAR-10 Batch 5:  Cost: 0.296501487493515, Valid Accuracy: 0.7049998641014099
Epoch 11, CIFAR-10 Batch 1:  Cost: 0.3590182662010193, Valid Accuracy: 0.7099998593330383
Epoch 11, CIFAR-10 Batch 2:  Cost: 0.394004762172699, Valid Accuracy: 0.6991998553276062
Epoch 11, CIFAR-10 Batch 3:  Cost: 0.2984470725059509, Valid Accuracy: 0.7033998370170593
Epoch 11, CIFAR-10 Batch 4:  Cost: 0.302537739276886, Valid Accuracy: 0.6989998817443848
Epoch 11, CIFAR-10 Batch 5:  Cost: 0.28532278537750244, Valid Accuracy: 0.7009998559951782
Epoch 12, CIFAR-10 Batch 1:  Cost: 0.3152196705341339, Valid Accuracy: 0.7047998905181885
Epoch 12, CIFAR-10 Batch 2:  Cost: 0.32453927397727966, Valid Accuracy: 0.7069998383522034
Epoch 12, CIFAR-10 Batch 3:  Cost: 0.26129478216171265, Valid Accuracy: 0.7085999250411987
Epoch 12, CIFAR-10 Batch 4:  Cost: 0.2644485533237457, Valid Accuracy: 0.7213999032974243
Epoch 12, CIFAR-10 Batch 5:  Cost: 0.20493921637535095, Valid Accuracy: 0.7125998735427856
Epoch 13, CIFAR-10 Batch 1:  Cost: 0.22845995426177979, Valid Accuracy: 0.7161998748779297
Epoch 13, CIFAR-10 Batch 2:  Cost: 0.27734917402267456, Valid Accuracy: 0.702599823474884
Epoch 13, CIFAR-10 Batch 3:  Cost: 0.20078226923942566, Valid Accuracy: 0.7217997908592224
Epoch 13, CIFAR-10 Batch 4:  Cost: 0.1977318525314331, Valid Accuracy: 0.7225998640060425
Epoch 13, CIFAR-10 Batch 5:  Cost: 0.1625274121761322, Valid Accuracy: 0.7013998031616211
Epoch 14, CIFAR-10 Batch 1:  Cost: 0.20941343903541565, Valid Accuracy: 0.71319979429245
Epoch 14, CIFAR-10 Batch 2:  Cost: 0.22109606862068176, Valid Accuracy: 0.7107998728752136
Epoch 14, CIFAR-10 Batch 3:  Cost: 0.18931545317173004, Valid Accuracy: 0.7209998369216919
Epoch 14, CIFAR-10 Batch 4:  Cost: 0.17245665192604065, Valid Accuracy: 0.7201998829841614
Epoch 14, CIFAR-10 Batch 5:  Cost: 0.12666547298431396, Valid Accuracy: 0.7099999189376831
Epoch 15, CIFAR-10 Batch 1:  Cost: 0.1649477183818817, Valid Accuracy: 0.6957998871803284
Epoch 15, CIFAR-10 Batch 2:  Cost: 0.20910196006298065, Valid Accuracy: 0.71399986743927
Epoch 15, CIFAR-10 Batch 3:  Cost: 0.16460655629634857, Valid Accuracy: 0.7227998971939087
Epoch 15, CIFAR-10 Batch 4:  Cost: 0.15689876675605774, Valid Accuracy: 0.7257998585700989
Epoch 15, CIFAR-10 Batch 5:  Cost: 0.12434524297714233, Valid Accuracy: 0.7229998111724854
Epoch 16, CIFAR-10 Batch 1:  Cost: 0.13498590886592865, Valid Accuracy: 0.7137998342514038
Epoch 16, CIFAR-10 Batch 2:  Cost: 0.15952308475971222, Valid Accuracy: 0.71399986743927
Epoch 16, CIFAR-10 Batch 3:  Cost: 0.14201946556568146, Valid Accuracy: 0.7173997759819031
Epoch 16, CIFAR-10 Batch 4:  Cost: 0.13035789132118225, Valid Accuracy: 0.7089998722076416
Epoch 16, CIFAR-10 Batch 5:  Cost: 0.09921566396951675, Valid Accuracy: 0.7209998369216919
Epoch 17, CIFAR-10 Batch 1:  Cost: 0.09819728881120682, Valid Accuracy: 0.7211998701095581
Epoch 17, CIFAR-10 Batch 2:  Cost: 0.11556250602006912, Valid Accuracy: 0.703799843788147
Epoch 17, CIFAR-10 Batch 3:  Cost: 0.12962713837623596, Valid Accuracy: 0.6973998546600342
Epoch 17, CIFAR-10 Batch 4:  Cost: 0.11188755184412003, Valid Accuracy: 0.7021998167037964
Epoch 17, CIFAR-10 Batch 5:  Cost: 0.10227618366479874, Valid Accuracy: 0.7207998633384705
Epoch 18, CIFAR-10 Batch 1:  Cost: 0.08533059060573578, Valid Accuracy: 0.7277998924255371
Epoch 18, CIFAR-10 Batch 2:  Cost: 0.08877917379140854, Valid Accuracy: 0.7225998640060425
Epoch 18, CIFAR-10 Batch 3:  Cost: 0.09716400504112244, Valid Accuracy: 0.7181998491287231
Epoch 18, CIFAR-10 Batch 4:  Cost: 0.07497880607843399, Valid Accuracy: 0.7151998281478882
Epoch 18, CIFAR-10 Batch 5:  Cost: 0.09201839566230774, Valid Accuracy: 0.7157997488975525
Epoch 19, CIFAR-10 Batch 1:  Cost: 0.07389415800571442, Valid Accuracy: 0.7241998314857483
Epoch 19, CIFAR-10 Batch 2:  Cost: 0.06526206433773041, Valid Accuracy: 0.7189998626708984
Epoch 19, CIFAR-10 Batch 3:  Cost: 0.061605826020240784, Valid Accuracy: 0.7355998754501343
Epoch 19, CIFAR-10 Batch 4:  Cost: 0.057335659861564636, Valid Accuracy: 0.7123998999595642
Epoch 19, CIFAR-10 Batch 5:  Cost: 0.06339623034000397, Valid Accuracy: 0.7155998349189758
Epoch 20, CIFAR-10 Batch 1:  Cost: 0.05394330993294716, Valid Accuracy: 0.7151998281478882
Epoch 20, CIFAR-10 Batch 2:  Cost: 0.04258808121085167, Valid Accuracy: 0.7245998382568359
Epoch 20, CIFAR-10 Batch 3:  Cost: 0.04457850754261017, Valid Accuracy: 0.739599883556366
Epoch 20, CIFAR-10 Batch 4:  Cost: 0.042179837822914124, Valid Accuracy: 0.7189998030662537
Epoch 20, CIFAR-10 Batch 5:  Cost: 0.03909622132778168, Valid Accuracy: 0.7213997840881348
Epoch 21, CIFAR-10 Batch 1:  Cost: 0.039547719061374664, Valid Accuracy: 0.7305998206138611
Epoch 21, CIFAR-10 Batch 2:  Cost: 0.05200860649347305, Valid Accuracy: 0.7295998334884644
Epoch 21, CIFAR-10 Batch 3:  Cost: 0.04865306243300438, Valid Accuracy: 0.7221998572349548
Epoch 21, CIFAR-10 Batch 4:  Cost: 0.03900712728500366, Valid Accuracy: 0.7203999161720276
Epoch 21, CIFAR-10 Batch 5:  Cost: 0.04032319784164429, Valid Accuracy: 0.7257997989654541
Epoch 22, CIFAR-10 Batch 1:  Cost: 0.04003668576478958, Valid Accuracy: 0.726599931716919
Epoch 22, CIFAR-10 Batch 2:  Cost: 0.032733120024204254, Valid Accuracy: 0.720599889755249
Epoch 22, CIFAR-10 Batch 3:  Cost: 0.0336458720266819, Valid Accuracy: 0.7305998206138611
Epoch 22, CIFAR-10 Batch 4:  Cost: 0.03453477472066879, Valid Accuracy: 0.7257997989654541
Epoch 22, CIFAR-10 Batch 5:  Cost: 0.02371136285364628, Valid Accuracy: 0.7293998599052429
Epoch 23, CIFAR-10 Batch 1:  Cost: 0.047538965940475464, Valid Accuracy: 0.7231998443603516
Epoch 23, CIFAR-10 Batch 2:  Cost: 0.023469319567084312, Valid Accuracy: 0.7195998430252075
Epoch 23, CIFAR-10 Batch 3:  Cost: 0.028181904926896095, Valid Accuracy: 0.7287998199462891
Epoch 23, CIFAR-10 Batch 4:  Cost: 0.04064479097723961, Valid Accuracy: 0.7135998010635376
Epoch 23, CIFAR-10 Batch 5:  Cost: 0.031032998114824295, Valid Accuracy: 0.7099998593330383
Epoch 24, CIFAR-10 Batch 1:  Cost: 0.028484748676419258, Valid Accuracy: 0.7183998823165894
Epoch 24, CIFAR-10 Batch 2:  Cost: 0.02268650382757187, Valid Accuracy: 0.72819983959198
Epoch 24, CIFAR-10 Batch 3:  Cost: 0.025906456634402275, Valid Accuracy: 0.72819983959198
Epoch 24, CIFAR-10 Batch 4:  Cost: 0.01703275740146637, Valid Accuracy: 0.7167998552322388
Epoch 24, CIFAR-10 Batch 5:  Cost: 0.015511390753090382, Valid Accuracy: 0.7179998755455017
Epoch 25, CIFAR-10 Batch 1:  Cost: 0.045921918004751205, Valid Accuracy: 0.7159998416900635
Epoch 25, CIFAR-10 Batch 2:  Cost: 0.01846957392990589, Valid Accuracy: 0.7113998532295227
Epoch 25, CIFAR-10 Batch 3:  Cost: 0.02299758419394493, Valid Accuracy: 0.7291998267173767
Epoch 25, CIFAR-10 Batch 4:  Cost: 0.024993669241666794, Valid Accuracy: 0.715199887752533
Epoch 25, CIFAR-10 Batch 5:  Cost: 0.013799181208014488, Valid Accuracy: 0.7147998213768005
 

Checkpoint

The model has been saved to disk.

Test Model

Test your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters.

In [27]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import tensorflow as tf
import pickle
import helper
import random

# Set batch size if not already set
try:
    if batch_size:
        pass
except NameError:
    batch_size = 64

save_model_path = './image_classification'
n_samples = 4
top_n_predictions = 3

def test_model():
    """
    Test the saved model against the test dataset
    """

    test_features, test_labels = pickle.load(open('preprocess_training.p', mode='rb'))
    loaded_graph = tf.Graph()

    with tf.Session(graph=loaded_graph) as sess:
        # Load model
        loader = tf.train.import_meta_graph(save_model_path + '.meta')
        loader.restore(sess, save_model_path)

        # Get Tensors from loaded model
        loaded_x = loaded_graph.get_tensor_by_name('x:0')
        loaded_y = loaded_graph.get_tensor_by_name('y:0')
        loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
        loaded_logits = loaded_graph.get_tensor_by_name('logits:0')
        loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0')
        
        # Get accuracy in batches for memory limitations
        test_batch_acc_total = 0
        test_batch_count = 0
        
        for train_feature_batch, train_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size):
            test_batch_acc_total += sess.run(
                loaded_acc,
                feed_dict={loaded_x: train_feature_batch, loaded_y: train_label_batch, loaded_keep_prob: 1.0})
            test_batch_count += 1

        print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count))

        # Print Random Samples
        random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples)))
        random_test_predictions = sess.run(
            tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions),
            feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0})
        helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions)


test_model()
 
INFO:tensorflow:Restoring parameters from ./image_classification
Testing Accuracy: 0.7125631898641587

 
 

Why 50-70% Accuracy?

You might be wondering why you can't get an accuracy any higher. First things first, 50% isn't bad for a simple CNN. Pure guessing would get you 10% accuracy. However, you might notice people are getting scores well above 70%. That's because we haven't taught you all there is to know about neural networks. We still need to cover a few more techniques.

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_image_classification.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.

 

 

欢迎扫码关注,或搜索大数据与知识图谱,定期分享大数据与知识图谱相关知识点:

 

posted @ 2019-03-05 19:30  派。  阅读(369)  评论(0编辑  收藏  举报