CCPC-Wannafly Summer Camp 2019 Day1

A - Jzzhu and Cities

 题目大意:给个图,m条普通边,k条特殊边,保证1到N的最短路上最多可以删掉几条特殊边使得最短路不变。

解法1:跑最短路后松弛一遍所有边,如果松弛时既有普通和特殊则可去掉特殊铁路。

解法2:直接重载搜索顺序使得迪杰斯特拉优先跑普通铁路,再记录总特殊条数-跑的条数即为答案。

/*
    Zeolim - An AC a day keeps the bug away
*/

//pragma GCC optimize(2)
#include <bits/stdc++.h>
typedef long long ll;
typedef long double ld;
typedef std::pair<int, int> pii;
//typedef __int128 ill;
const ld PI = acos(-1.0);
const ld E = exp(1.0);
const ll INF = 0x3f3f3f3f;
const ll MOD = 1e9 + 7;
using namespace std;
const int MAXN = 1e6 + 10;

int n, m, k;


bool used[MAXN];

struct node
{
	ll to, val, ok;
	node() { }
	node(ll a, ll b, ll c) { to = a, val = b, ok = c; }
};

vector <node> edge[MAXN];

struct bfsnode
{
	ll now, dis, cnt;
	bfsnode() { }
	bfsnode(ll a, ll b, ll c) { now = a, dis = b, cnt = c; }
};

bool operator < (bfsnode a, bfsnode b)
{
	if(a.dis == b.dis)
		return a.cnt > b.cnt;
	return a.dis > b.dis; 
 } 

void bfs()
{
	priority_queue <bfsnode> PQ;
	
	PQ.push(bfsnode(1, 0, 0));
	
	ll ans = 0;
	
	while(!PQ.empty())
	{
		bfsnode rnow = PQ.top();
		PQ.pop();
		
		if(used[rnow.now])
			continue;
			
		used[rnow.now] = true;
		
		if(rnow.cnt)
			++ans;
		
		for(auto x : edge[rnow.now])
		{
			PQ.push(bfsnode(x.to, rnow.dis + x.val, x.ok));
		}
	}
	
	cout << k - ans << '\n';
}
 
int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0); cout.tie(0);
    
	//freopen("azerah.in","r",stdin); 
	//freopen("azerah.out","w",stdout); 
	
	cin >> n >> m >> k;
	
	for(int i = 0; i < m; ++i)
	{
		ll a, b, c;
		cin >> a >> b >> c;
		edge[a].push_back(node(b, c, 0));
		edge[b].push_back(node(a, c, 0));
	}
	
	for(int i = 0; i < k; ++i)
	{
		ll a, b;
		cin >> a >> b;
		edge[1].push_back(node(a, b, 1));
		edge[a].push_back(node(1, b, 1));
	}
	
	bfs();	
   	
 
    return 0;
}

B - Phillip and Trains

人只能向右一步同时向上 或 向下 或不动, 然后火车向左两步,求会不会被撞。

解法:相对运动转化+二维dp,当前位置只能由三个位置转移而来,如果能转移到最右端则不会被撞

/*
    Zeolim - An AC a day keeps the bug away
*/

//pragma GCC optimize(2)
#include <bits/stdc++.h>
typedef long long ll;
typedef long double ld;
typedef std::pair<int, int> pii;
//typedef __int128 ill;
const ld PI = acos(-1.0);
const ld E = exp(1.0);
const ll INF = 0x3f3f3f3f;
const ll MOD = 1e9 + 7;
using namespace std;
const int MAXN = 4e6 + 10;

char arr[5][200];
int ok[5][200];

bool check(int x, int y)
{
	if ( arr[x][y] != '.' || arr[x][y - 1] != '.' || arr[x][y - 2] != '.')
		return false;
		
	if(arr[x][y - 3] == '.' && ok[x][y - 3])
		return true;
	
	if(x != 2)
	{
		if(arr[x + 1][y - 2] == '.' && arr[x + 1][y - 3] == '.' && ok[x + 1][y - 3])
			return true;
	}
	if(x != 0)
	{
		if(arr[x - 1][y - 2] == '.' && arr[x - 1][y - 3] == '.' && ok[x - 1][y - 3])
			return true;
	}
	return false;
}
int main()  
{   
    ios::sync_with_stdio(0);
    cin.tie(0); cout.tie(0);  
    
    int t;
    
    cin >> t;
    
    while(t--)
    {
    	memset(arr, '.', sizeof(arr));
    	memset(ok, 0, sizeof(ok));
    	
    	int n, k;
    	
    	cin >> n >> k;
    	
    	for(int i = 0; i < 3; ++i)
    	{
    		for(int j = 0; j < n; ++j)
    		{
    			cin >> arr[i][j];
    			if(arr[i][j] == 's')
    				ok[i][j] = 1, arr[i][j] = '.';
			}
		}
		
		bool flag = false;
		
		for(int j = 3; j < n + 10; j++)
		{
			for(int i = 0; i < 3; ++i)
			{
				if(check(i, j))
				{
					ok[i][j] = true;
					if(j >= n - 1)
						flag = true;
				}
			}
		}
		
//		for(int i = 0; i < 3; ++i)
//		{
//			for(int j = 0; j < n; ++j)
//			{
//				cout << ok[i][j] ;
//			}
//			cout << '\n';
//		}
		
		
		if(flag)
			cout << "YES\n";
		else
			cout << "NO\n";
	
    	
	}
    
     
    return 0;  
} 

/*
1
16 4
...AAAAA........
s.BBB....CCCCC..
.......DDDDD....
*/

C - A Mist of Florescence

 题意,构造一个50*50 以内的矩阵,包含a个A联通快,b个B联通块,c个C联通块,d个D联通块。

解法:构造4个25*25的ABCD矩阵连在一起, 然后每九宫格往里填即可。

/*
	    Zeolim - An AC a day keeps the bug away
	*/
	
	//pragma GCC optimize(2)
	#include <bits/stdc++.h>
	typedef long long ll;
	typedef long double ld;
	typedef std::pair<int, int> pii;
	//typedef __int128 ill;
	const ld PI = acos(-1.0);
	const ld E = exp(1.0);
	const ll INF = 0x3f3f3f3f;
	const ll MOD = 1e9 + 7;
	using namespace std;
	const int MAXN = 1e2 + 10;
	
	char mp[MAXN][MAXN] = {0};
	
	void init(int x, int y, char c)
	{
		for(int i = x; i < x + 25; ++i)
		{
			for(int j = y; j < y + 25; ++j)
			{
				mp[i][j] = c;
			}
		}
	}
	
	void show()
	{
		for(int i = 0; i < 50; ++i)
		{
			for(int j = 0; j < 50; ++j)
			{
				cout << mp[i][j];
			}
			cout << '\n';
		}
	}
	
	int main()  
	{   
		ios::sync_with_stdio(0);
		cin.tie(0); cout.tie(0);  
		
		int a, b, c, d;
		
		cin >> a >> b >> c >> d;
		
		init(0, 0, 'A');
		init(0, 25, 'B');
		init(25, 0, 'C');
		init(25, 25, 'D');
		
		--a, --b, --c, --d;
		
		for(int i = 1; i < 50; i += 2)
		{
			if(i == 25)
				++i;
			for(int j = 1; j < 50; j += 2)
			{
				if(j == 25)
					++j;
				if(a && mp[i][j] != 'A')
				 	--a, mp[i][j] = 'A';
				
				else if(b && mp[i][j] != 'B')
				 	--b, mp[i][j] = 'B';
				
				else if(c && mp[i][j] != 'C')
					--c, mp[i][j] = 'C';
				else if(d && mp[i][j] != 'D')
					--d, mp[i][j] = 'D';
			}
		}
		
		
		cout << "50 50\n";
		
		show();
		
	    return 0;  
	} 

D - Unbearable Controversy of Being

题意:求图中菱形个数

遍历所有点能达到的长度为2的路径的到达点,map计数,加法原理记录答案。

/*
    Zeolim - An AC a day keeps the bug away
*/

//pragma GCC optimize(2)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double ld;
typedef std::pair<int, int> pii;
#define mp(x, y) make_pair(x, y) 
//typedef __int128 ill;
const ld PI = acos(-1.0);
const ld E = exp(1.0);
const ll INF = 1e18; 
const ll MOD = 1e9 + 7;
const int MAXN = 3e3 + 10;

int n, m;

vector <int> edge[MAXN];

int ans = 0;

map <int, int> rec;
	
bitset <MAXN> used[MAXN];



void cal(int now)
{
	
	rec.clear();
	
	for(int i = 1; i <= n; ++i)
		used[i].reset();
	
	for(auto x : edge[now])
	{
		for(auto y : edge[x])
		{
			if(!used[x][y] && y != now)
			{
				ans += rec[y];
				++rec[y];
			}
		}
	}
		
	return ;
}



int main()
{ 	
	cin >> n >> m;
	
	for(int i = 0, from, to; i < m; ++i)
		cin >> from >> to, edge[from].push_back(to);
		
	for(int i = 1; i <= n; ++i)
	{
		cal(i);
	}
	
	cout << ans << '\n';
	
    return 0;
}

E - Igor In the Museum

 题意:每个.和*之间都有一副画,求点x,y所在联通块内画的总数。

思路:dfs染色记录答案输出

我用的二维映射一维+并查集

/*
    Zeolim - An AC a day keeps the bug away
*/

//pragma GCC optimize(2)
#include <bits/stdc++.h>
typedef long long ll;
typedef long double ld;
typedef std::pair<int, int> pii;
//typedef __int128 ill;
const ld PI = acos(-1.0);
const ld E = exp(1.0);
const ll INF = 0x3f3f3f3f;
const ll MOD = 1e9 + 7;
using namespace std;
const int MAXN = 2e6 + 10;

char mp[1100][1100];
bool used[1100][1100][4];

int fa[MAXN] = {0};
int val[MAXN] = {0};

int movl[4][2] = {{0, -1}, {-1, 0}, {0, 1}, {1, 0}};

int findfa(int x)
{
	return x == fa[x] ? x : fa[x] = findfa(fa[x]);
}

int n, m, k;

int tra(int x, int y)
{
	return (x - 1) * m + y;
}

void oprt(int x, int y)
{
	for(int i = 0; i < 4; ++i)
	{
		int rx = x + movl[i][0], ry = y + movl[i][1], rp = tra(x, y);
		if(mp[rx][ry] == '*' && !used[rx][ry][i])
		{
			++val[rp];
			used[rx][ry][i] = true;
		}
	}
	
	for(int i = 0; i < 2; ++i)
	{
		int rx = x + movl[i][0], ry = y + movl[i][1], rp = tra(rx, ry), rrp = tra(x, y);
		if(mp[rx][ry] == '.')
		{
			int p = findfa(rp), q = findfa(rrp);
			if(p != q)
			{
				fa[p] = q;
				val[q] += val[p];
			}
		}
	}
}

int main()  
{   
	ios::sync_with_stdio(0);
	cin.tie(0); cout.tie(0);  

    cin >> n >> m >> k;
    
    for(int i = 0; i <= n * m + n + m + 100; ++i)
    {
    	fa[i] = i;
	}
    
    for(int i = 1; i <= n; ++i)
    {
    	for(int j = 1; j <= m; ++j)
    	{
    		cin >> mp[i][j];                    
		}
	}
	
	
	for(int i = 1; i <= n; ++i)
	{
		for(int j = 1; j <= m; ++j)
		{
			if(mp[i][j] == '.')
			{
				oprt(i, j);
			}
		}
	}
	
	
	while(k--)
	{
		int x, y;
		
		cin >> x >> y;
		
		int rp = findfa( tra(x, y) );
		
		cout << val[rp] << '\n';
	}
    
    return 0;  
} 

F - The Child and Toy

 智障题,删每条边两端点最小点权之和

/*
    Zeolim - An AC a day keeps the bug away
*/

//pragma GCC optimize(2)
#include <bits/stdc++.h>
typedef long long ll;
typedef long double ld;
typedef std::pair<int, int> pii;
//typedef __int128 ill;
const ld PI = acos(-1.0);
const ld E = exp(1.0);
const ll INF = 0x3f3f3f3f;
const ll MOD = 1e9 + 7;
using namespace std;
const int MAXN = 1e6 + 10;


ll val[MAXN];

int main()  
{  
	ios::sync_with_stdio(0);
	cin.tie(0); cout.tie(0);
	
	int n, m;
	
	cin >> n >> m;
	
	for(int i = 1; i <= n; ++i)
	{
		cin >> val[i];
	}
	
	ll ans = 0;
	
	for(int i = 1; i <= m; ++i)
	{
		int p, q;
		cin >> p >> q;
		ans += min(val[p], val[q]);
	}
	
	cout << ans << '\n';
    
    return 0;  
} 

G - New Year Permutation

一个矩阵,若i,j == j,i == 1则这部分有传递性可互换,求最小排列。

用并查集维护联通块后set排序+位置直接复写数组输出即可

/*
    Zeolim - An AC a day keeps the bug away
*/

//pragma GCC optimize(2)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double ld;
typedef std::pair<int, int> pii;
#define mp(x, y) make_pair(x, y) 
//typedef __int128 ill;
const ld PI = acos(-1.0);
const ld E = exp(1.0);
const ll INF = 1e18; 
const ll MOD = 1e9 + 7;
const int MAXN = 5e2 + 10;

int fa[MAXN];

int findfa(int x)
{
	return x == fa[x] ? x : fa[x] = findfa(fa[x]);
}

int arr[MAXN] = {0};

bitset <MAXN> ok[MAXN];

set <int> ST[MAXN], RT[MAXN];

int main()
{ 	
	int n;
	
	cin >> n;
	
	for(int i = 1; i <= n; ++i)
		cin >> arr[i];
		
	for(int i = 1; i <= n; ++i)
	{
		fa[i] = i;
		for(int j = 1; j <= n; ++j)
		{
			char x;
			
			cin >> x;
			
			ok[i][j] = x == '1';
		}
	}
	
	for(int i = 1; i <= n; ++i)
	{
		for(int j = 1; j <= n; ++j)
		{
			if(ok[i][j] && ok[j][i])
			{
				int p = findfa(i), q = findfa(j);
				
				if(p != q)
					fa[p] = q;
			}
		}
	}
	
	for(int i = 1; i <= n; ++i)
	{
		int p = findfa(i);
		ST[p].insert(arr[i]);
		RT[p].insert(i);
	}
	
	for(int i = 1; i <= n; ++i)
	{
		auto r = RT[i].begin();
		for(auto x : ST[i])
		{
			arr[ *r ] = x;
			++r;
		}
	}
	
	for(int i = 1; i <= n; ++i)
		cout << arr[i] << ' ';
	
	
	
	
	
    return 0;
}

H - Alyona and the Tree

 规定1为根节点,若存在dis(u,v) > val(u)则称u 伤心,问需要删多少点才让整棵树不伤心

从根dfs统计不伤心的点,加上一点的树上dp (最大路径和)即可

/*
    Zeolim - An AC a day keeps the bug away
*/

//pragma GCC optimize(2)
#include <bits/stdc++.h>
typedef long long ll;
typedef long double ld;
typedef std::pair<int, int> pii;
//typedef __int128 ill;
const ld PI = acos(-1.0);
const ld E = exp(1.0);
const ll INF = 0x3f3f3f3f;
const ll MOD = 1e9 + 7;
using namespace std;
const int MAXN = 1e6 + 10;

ll val[MAXN] = {0};
bool used[MAXN] = {0};

struct node
{
	ll to, val;
	node(){}
	node(int x, int y)
	{
		to = x;
		val = y;
	} 
};

vector <node> edge[MAXN];


int n, k;

void dfs(ll now, ll sum)
{
	if(sum > val[now])
		return;
		
	used[now] = true;
	
	for(int i = 0; i < edge[now].size(); ++i)
	{
		if(!used[edge[now][i].to])
			dfs(edge[now][i].to, max(sum + edge[now][i].val, edge[now][i].val));
	}
}


int main()  
{   
    cin >> n;
    
    for(int i = 1; i <= n; ++i)
    	cin >> val[i];
    	
    for(int i = 2; i <= n; ++i)
    {
    	int to, val;
    	cin >> to >> val;
    	edge[i].push_back(node(to, val));
    	edge[to].push_back(node(i, val));
	}
	
	dfs(1, 0);
	
	int ans = n;
	
	for(int i = 1; i <= n; ++i)
	{
		if(used[i])
			--ans;
	}
	
	cout << ans << '\n';
	
    return 0;  
} 

 

posted @ 2019-07-30 13:56  张浦  阅读(119)  评论(0编辑  收藏  举报