Search in Sorted Array,Search in Rotated Sorted Array,Search in Rotated Sorted ArrayII
一:Search in Sorted Array
二分查找,可有重复元素,返回target所在的位置,只需返回其中一个位置,代码中的查找范围为[low,high),左闭右开,否则容易照成死循环。
代码:
class Solution { public: int search(vector<int>& nums, int target) { int numsSize = nums.size(); int low = 0,high = numsSize; while(low < high){ int mid = low + (high-low)/2; if(nums[mid]==target){ return mid; }else if(nums[mid]<target){ low = mid+1; }else if(nums[mid]>target){ high = mid; } } return -1; } };
二:Search in Rotated Sorted Array
Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7
might become 4 5 6 7 0 1 2
).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
数组中不存在重复元素
这时没法像通常的二分查找那样的直接定位target在中点元素的哪一端,需要进行讨论。如果target<A[mid],有两种可能,一种是mid在左边有序数组,另一种可能是mid在右侧的有序数组。mid在左边有序数组,那么target又有两种可能,可以在左边有序数组,也可在右边有序数组;如果mid在右侧有序数组,那么只有一种可能,只能在右侧数组。同理可以讨论target>A[mid]时的情况。而mid在左侧有序数组还是右侧有序数组可以通过A[mid]>A[low]?的关系确定。当然可以画图分析,红线部分表示mid可能的位置:
代码:
class Solution { public: int search(vector<int>& nums, int target) { int numsSize = nums.size(); int low = 0,high = numsSize; while(low < high){ int mid = low + (high-low)/2; if(nums[mid]==target){ return mid; }else if(nums[mid]<target){ if(nums[mid]>nums[low]){//mid位于左边区域 low = mid+1; }else{//mid位于右边区域 if(target>nums[low]){ high = mid; }else if(target == nums[low]){ return low; }else{ low = mid+1; } } }else if(nums[mid]>target){ if(nums[mid]>nums[low]){//mid位于左边区域,target有两个可能的区域位置 if(target>nums[low]){ high = mid; }else if(target == nums[low]){ return low; }else{ low = mid+1; } }else{//mid位于右边区域 high = mid; } } } return -1; } };
三:Search in Rotated Sorted ArrayII
Follow up for "Search in Rotated Sorted Array":
What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given target is in the array.
数组中如果有重复元素时,时间复杂度退化到o(n)。
如果有重复元素,当A[mid]>=A[low]时,我们无法确定mid在左边有序数组还是右边有序数组,可以画图理解,如下两幅图,红线部分表示mid的位置,两幅图中均有A[mid]>=A[low]
由于当target>A[mid]时,我们无法确定mid在哪个有序数组中,所以我们没法讨论了,此时,我们将low上升一个,high下降一个。
代码:
class Solution { public: bool search(vector<int>& nums, int target) { int numsSize = nums.size(); int low = 0,high = numsSize; while(low < high){ int mid = low + (high-low)/2; if(nums[mid]==target){ return true; }else if(nums[mid]<target){ if(nums[mid]>=nums[low]){//无法确定mid在左边区域还是在右边区域 if(target == nums[low] || target==nums[high-1]){ return true; } low++; high--; }else{//mid位于右边区域 if(target>nums[low]){ high = mid; }else if(target == nums[low]){ return true; }else{ low = mid+1; } } }else if(nums[mid]>target){ if(nums[mid]>=nums[low]){//无法确定mid在左边区域还是在右边区域 if(target == nums[low] || target==nums[high-1]){ return true; } low++; high--; }else{//mid位于右边区域 high = mid; } } } return false; } };
写者:zengzy
出处: http://www.cnblogs.com/zengzy
标题有【转】字样的文章从别的地方转过来的,否则为个人学习笔记