Google Kick Start Round G 2019

Google Kick Start Round G 2019

Book Reading

暴力,没啥好说的

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int maxn=1e5+5;

int n,m,q,p[maxn],r[maxn];
int cnt[maxn];

int main()
{
	int T,Case=1;
	scanf("%d",&T);
	while(T--){
		scanf("%d %d %d",&n,&m,&q);
		for(int i=1;i<=n;i++)cnt[i]=0;
		
		
		for(int i=1;i<=m;i++){
			scanf("%d",&p[i]);
			int ub=sqrt(p[i]);
			for(int j=1;j<=ub;j++){
				if(p[i]%j==0){
					++cnt[j];
					if(j*j!=p[i])++cnt[p[i]/j];
				}
			}
		}
		
		ll ans=0;
		for(int i=1;i<=q;i++){
			scanf("%d",&r[i]);
			ans=ans+n/r[i]-cnt[r[i]];
		}
		printf("Case #%d: %lld\n",Case++,ans);
	}
    return 0;
}

The Equation

题意

给定数组A和整数M\((0 \leq A_i \leq 10^{15},0 \leq M \leq 10^{15})\),求使得​\(\sum_{i=1}^n(A_i xor k) \leq M\)成立的k的最大值。

解题思路

从k的二进制高位开始贪心,尽可能的选1,选1的条件是目前为止的高位和,加上之后低位和的最小值小于\(M\)

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N=70;
int n,cnt[N];
ll m,sum[N],s;

ll a[1005];

int main()
{
	int T,Case=1;
	scanf("%d",&T);
	while(T--){
		for(int i=0;i<=62;i++)cnt[i]=0;
		s=0;
		
		scanf("%d %lld",&n,&m);
		for(int i=1;i<=n;i++)scanf("%lld",&a[i]),s+=a[i];
		
		for(int i=1;i<=n;i++)
			for(int j=0;j<=62;j++)
				if(a[i]&(1ll<<j))cnt[j]++;
		
		for(int i=0;i<=62;i++){
			if((1ll<<i)>2e15)break;
			sum[i]=(i-1>=0?sum[i-1]:0)+(1ll<<i)*min(cnt[i],n-cnt[i]);
		}
		
		ll k=0,cur=0;
		for(int i=62;i>=0;i--){
			if((1ll<<i)>2e15)continue;
			ll d=(n-cnt[i])*(1ll<<i);
			if(cur+(i-1>=0?sum[i-1]:0)+d<=m){ 
				k+=(1ll<<i);
				cur+=(n-cnt[i])*(1ll<<i);
			}
			else{
				cur+=cnt[i]*(1ll<<i);
			}
		}
		
		if(k==0)k=(s<=m?0:-1);
		printf("Case #%d: %lld\n",Case++,k);
	}
    return 0;
}

Shifts

题意

给定长度为\(n(n \leq 20)\)的数组A和B,对于每个下标\(i\),至少选取\(A_i\)\(B_i\)中的一个,问有多少种选法使得选中的\(A_i\)的和以及\(B_i\)的和都大于给定整数\(h\)

解题思路

将n等分为两份,分别dfs求出所有可能得到的和,问题就转化为了二维偏序,离散化后树状数组即可求解。复杂度\(O(3^{10}log3^{10})\)

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int maxn=1e5+5;
const int maxl=1e5+5;

int n,n1,n2;
ll h,ans;
int a[30],b[30];

struct node{ll x,y;int t;};
bool cmp(node p,node q){
	if(p.x!=q.x)return p.x>q.x;
	if(p.y!=q.y)return p.y>q.y;
	return p.t<q.t;
}
node p[maxl<<1];
int cnt;
ll t[maxl<<2],m;

//BIT
	ll c[maxl<<2];
	ll lb(ll x){return x&(-x);}
	void add(ll x,ll d){for(;x<m;x+=lb(x))c[x]+=d;}
	ll getsum(ll x){ll r=0;for(;x;x-=lb(x))r+=c[x];return r;}	

void dfs1(int x,ll sa,ll sb){
	if(x==n1+1){
		p[++cnt]=(node){sa,sb,0};
		t[++m]=sa;t[++m]=sb;
		return;	
	}
	
	dfs1(x+1,sa+a[x],sb);
	dfs1(x+1,sa,sb+b[x]);
	dfs1(x+1,sa+a[x],sb+b[x]);
}

void dfs2(int x,ll sa,ll sb){
	if(x==n+1){
		p[++cnt]=(node){h-sa,h-sb-1,1};
		t[++m]=h-sa;t[++m]=h-sb-1;
		return;	
	}
	
	dfs2(x+1,sa+a[x],sb);
	dfs2(x+1,sa,sb+b[x]);
	dfs2(x+1,sa+a[x],sb+b[x]);
}


int main()
{
//#ifndef ONLINE_JUDGE
//	freopen("in.txt","r",stdin);
//#endif
	int T,Case=1;
	scanf("%d",&T);
	while(T--){
		cnt=0; m=0; ans=0;
		
		scanf("%d %lld",&n,&h);
		n1=n/2; n2=n-n1;
		for(int i=1;i<=n;++i)scanf("%d",&a[i]);
		for(int i=1;i<=n;++i)scanf("%d",&b[i]);
		
		dfs1(1,0,0);
		dfs2(n1+1,0,0);
		
		sort(t+1,t+1+m);
		m=unique(t+1,t+1+m)-(t+1);
		
		vector<int>op;
		ll count=0;
		sort(p+1,p+1+cnt,cmp);
		for(int i=1;i<=cnt;i++){
			if(p[i].t){
				int id=lower_bound(t+1,t+1+m,p[i].y)-t;
				
				ans+=(count-getsum(id));
			}
			else{
				int id=lower_bound(t+1,t+1+m,p[i].y)-t;
				
				add(id,1);	
				op.push_back(id);
				count++;
			}
		}
		printf("Case #%d: %lld\n",Case++,ans);
		for(int id:op)add(id,-1);
	}
    return 0;
}

posted @ 2019-10-20 20:24  _Backl1ght  阅读(257)  评论(0编辑  收藏  举报