15 手写数字识别-小数据集

作业补交:

https://www.cnblogs.com/zengyf/p/13054699.html

https://www.cnblogs.com/zengyf/p/13054744.html

https://www.cnblogs.com/zengyf/p/13055110.html

https://www.cnblogs.com/zengyf/p/13055257.html

https://www.cnblogs.com/zengyf/p/13055261.html

https://www.cnblogs.com/zengyf/p/13055266.html

https://www.cnblogs.com/zengyf/p/13055551.html

https://www.cnblogs.com/zengyf/p/13055600.html

原因:电脑未带回家。

1.手写数字数据集

  • from sklearn.datasets import load_digits
  • digits = load_digits()

 

digits = load_digits()
X_data = digits.data.astype(np.float32)
Y_data = digits.target.astype(np.float32).reshape(-1, 1)

  

2.图片数据预处理

  • x:归一化MinMaxScaler()
  • y:独热编码OneHotEncoder()或to_categorical
  • 训练集测试集划分
  • 张量结构

 

# 将属性缩放到一个指定的最大和最小值(通常是1-0之间)
scaler = MinMaxScaler()
X_data = scaler.fit_transform(X_data)
print("MinMaxScaler_trans_X_data:")
print(X_data)

Y = OneHotEncoder().fit_transform(Y_data).todense()# 进行one-hot编码
print("one-hot_Y:")
print(Y)
# 转换为图片的格式
X = X_data.reshape(-1, 8, 8, 1)
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0, stratify=Y)
print('X_train.shape, X_test.shape, y_train.shape, y_test.shape:', X_train.shape, X_test.shape, y_train.shape, y_test.shape)

  运行图:

3.设计卷积神经网络结构

  • 绘制模型结构图,并说明设计依据。
  • model = Sequential()
    ks = (3, 3)  # 卷积核的大小
    input_shape = X_train.shape[1:]
    model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))# 一层卷积,padding='same',tensorflow会对输入自动补0
    model.add(MaxPool2D(pool_size=(2, 2)))# 池化层1
    model.add(Dropout(0.25))# 防止过拟合,随机丢掉连接
    model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))# 二层卷积
    model.add(MaxPool2D(pool_size=(2, 2)))# 池化层2
    model.add(Dropout(0.25))
    model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))# 三层卷积
    model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))# 四层卷积
    model.add(MaxPool2D(pool_size=(2, 2)))# 池化层3
    model.add(Dropout(0.25))
    model.add(Flatten())# 平坦层
    model.add(Dense(128, activation='relu'))# 全连接层
    model.add(Dropout(0.25))
    model.add(Dense(10, activation='softmax'))# 激活函数softmax
    model.summary()
    

    运行图:

  •  

     

     

     

4.模型训练

  • model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
  • train_histor:y = model.fit(x=X_train,y=y_train,validation_split=0.2, batch_size=300,epochs=10,verbose=2)
  • # 训练
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    train_history = model.fit(x=X_train, y=y_train, validation_split=0.2, batch_size=300, epochs=10, verbose=2)
    score = model.evaluate(X_test,y_test)
    score

运行图:

 

 

5.模型评价

  • model.evaluate()
  • 交叉表与交叉矩阵
  • pandas.crosstab
  • seaborn.heatmap
  • # 模型评价
    score = model.evaluate(X_test, y_test)
    print('score:', score)
    # 预测值
    y_pred = model.predict_classes(X_test)
    print('y_pred:', y_pred[:10])
    # 交叉表与交叉矩阵
    y_test1 = np.argmax(y_test, axis=1).reshape(-1)
    y_true = np.array(y_test1)[0]
    # 交叉表查看预测数据与原数据对比
    pd.crosstab(y_true, y_pred, rownames=['true'], colnames=['predict'])

    # 交叉矩阵
    y_test1 = y_test1.tolist()[0]
    a = pd.crosstab(np.array(y_test1), y_pred)
    df = pd.DataFrame(a)
    sns.heatmap(df, annot=True, cmap="YlGnBu", linewidths=0.2, linecolor='G')
    plt.show()

    运行图:

     

     

posted @ 2020-06-11 21:13  Notes_zeng  阅读(219)  评论(0编辑  收藏  举报