图解AVL树
1:AVL树简介
二叉搜索树在一般情况下其搜索的时间复杂度为O(logn),但某些特殊情况下会退化为链表,导致树的高度变大且搜索的时间复杂度变为O(n),发挥不出树这种数据结构的优势,因此平衡二叉树便应运而生,通过保证树的高度来保证查询的时间复杂度为O(logn),想想人类实在是太聪明了!2:构造AVL树
在构造一棵AVL树的时候如何保持平衡呢?其手段便是通过各种旋转变换来调整以此保证整棵树的高度,调整的原则是左右子树的高度不能大于1的绝对值(平衡因子)先来介绍下旋转的方法吧。2.1:LL型
当插入元素后构成LL型,如下图所示,则以2为支,高右转,把3右旋下来保证平衡。2.2:RR型
当插入元素后构成RR型,如下图所示,则以2为支,高左转,把1左旋转下来保证平衡。2.3:LR型
当插入元素后构成LR型,如下图所示,先2,3整体左旋,在根据LL型进行右旋转来保证平衡。2.4:RL型
当插入元素后构成RL型,如下图所示,先将5右转,在与6进行交换,在根据RR型进行旋转来保证平衡。2.5:其他情况
当因为插入一个元素而导致出现两个不平衡点,应该调整距离插入节点最近的不平衡点2.6:自测题
测试题:以关键字序列{16、3、7、11、9、26、18、14、15}构造一颗AVL树2.7:java实现AVL的构造
package AVL;
/**
* @author admin
* @version 1.0.0
* @ClassName AVLTree.java
* @Description TODO
* @createTime 2020年03月30日 18:28:00
*/
public class AVLTree {
/**
* 获取左右节点的高度差,即平衡因子
* @param root
* @return
*/
public int getBalance(Node root) {
return root==null?0:getHeight(root.left)-getHeight(root.right);
}
/**
* 获取节点的高度
* @param root
* @return
*/
public int getHeight(Node root) {
return root == null ? 0 : root.height;
}
/**
* 更新节点的高度
* @param root
* @return
*/
private int updateHeight(Node root) {
if (root == null)
return 0;
return Math.max(updateHeight(root.left), updateHeight(root.right)) + 1;
}
/**
* LL型,右旋操作
*
* @param root
* @return
*/
public Node rightRotate(Node root) {
Node node = root.left;
root.left = node.right;
node.right = root;
root.height = updateHeight(root);
node.height = updateHeight(node);
return node;
}
/**
* RR型,左旋操作
* @param root
* @return
*/
public Node leftRotate(Node root) {
Node node = root.right;
root.right = node.left;
node.left = root;
root.height = updateHeight(root);
node.height = updateHeight(node);
return node;
}
public Node insert(Node node, int data) {
//当节点为空,直接插入
if (node == null) {
return (new Node(data));
}
//当插入元素<node.data,往node的左子树进行插入;>node.data,往node的右子树插入
if (node.data > data) {
node.left = insert(node.left, data);
} else {
node.right = insert(node.right, data);
}
//更新节点的高度
node.height = updateHeight(node);
//获取平衡因子(左子树高度-右子树高度)
int balDiff = getBalance(node);
// 右旋
if (balDiff > 1 && data < node.left.data) {
return rightRotate(node);
}
// 左旋
if (balDiff < -1 && data > node.right.data) {
return leftRotate(node);
}
// 先左旋在右旋
if (balDiff > 1 && data > node.left.data) {
node.left = leftRotate(node.left);
return rightRotate(node);
}
// 先右旋在左旋
if (balDiff < -1 && data < node.right.data) {
node.right = rightRotate(node.right);
return leftRotate(node);
}
return node;
}
}
class Node {
int data;
Node left;
Node right;
int height;
public Node(Integer data) {
this.data = data;
height = 1;
}
}
3:AVL树的删除
3.1:删除叶子节点
3.2:删除只拥有左子树或右子树的节点
3.3:删除既拥有左子树又有右子树的节点
3.4:自测题
将上一道自测题的图依次删除16,15,11节点,画出最后的结果参考链接
数据可视化网站: https://visualgo.net/zh
哔哩哔哩讲AVL:https://www.bilibili.com/video/BV1xE411h7dd