tensorflow 初学习

tenseroflow 拟合 y = ax*x+b
构建神经网络主要分为 4 个步骤:
构造数据、构建网络、训练模型、评估及预测模型。此外,还介绍了一些超参数设定的经验和
技巧

#
coding=utf-8 import tensorflow as tf import numpy as np x_data = np.linspace(-1,1,300)[:,np.newaxis] noise = np.random.normal(0,0.05,x_data.shape) y_data = np.square(x_data) - 0.5 + noise #神经网络输入变量 xs = tf.placeholder(tf.float32,[None,1]) ys = tf.placeholder(tf.float32,[None,1]) def add_layer(inputs, in_size,out_size,activation_function=None): #权重 weights = tf.Variable(tf.random_normal([in_size,out_size])) #偏移 biases = tf.Variable(tf.zeros([1,out_size]) + 0.1) # Wx_plus_b = tf.matmul(inputs,weights) + biases if activation_function is None: outputs = Wx_plus_b else : outputs = activation_function(Wx_plus_b) return outputs #hide 20隐藏层 h1 = add_layer(xs,1,20,activation_function = tf.nn.relu) #output 1输出层 个人感觉关系是 1-》20-》1 prediction = add_layer(h1,20,1,activation_function=None) #loss loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) #train init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) for i in range(1000): sess.run(train_step,feed_dict={xs: x_data,ys:y_data}) if i % 50 == 0: print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))

 

posted on 2017-09-20 15:44  zyz913614263  阅读(337)  评论(2编辑  收藏  举报

导航