stl_list.h
stl_list.h // Filename: stl_list.h // Comment By: 凝霜 // E-mail: mdl2009@vip.qq.com // Blog: http://blog.csdn.net/mdl13412 /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /* NOTE: This is an internal header file, included by other STL headers. * You should not attempt to use it directly. */ #ifndef __SGI_STL_INTERNAL_LIST_H #define __SGI_STL_INTERNAL_LIST_H __STL_BEGIN_NAMESPACE #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma set woff 1174 #endif //////////////////////////////////////////////////////////////////////////////// // list结点, 提供双向访问能力 //////////////////////////////////////////////////////////////////////////////// // -------- -------- -------- -------- // | next |---------->| next |---------->| next |---------->| next | // -------- -------- -------- -------- // | prev |<----------| prev |<----------| prev |<----------| prev | // -------- -------- -------- -------- // | data | | data | | data | | data | // -------- -------- -------- -------- //////////////////////////////////////////////////////////////////////////////// template <class T> struct __list_node { typedef void* void_pointer; void_pointer next; void_pointer prev; T data; }; // 至于为什么不使用默认参数, 这个是因为有一些编译器不能提供推导能力, // 而作者又不想维护两份代码, 故不使用默认参数 template<class T, class Ref, class Ptr> struct __list_iterator { // 标记为'STL标准强制要求'的typedefs用于提供iterator_traits<I>支持 typedef __list_iterator<T, T&, T*> iterator; // STL标准强制要求 typedef __list_iterator<T, const T&, const T*> const_iterator; typedef __list_iterator<T, Ref, Ptr> self; typedef bidirectional_iterator_tag iterator_category; typedef T value_type; // STL标准强制要求 typedef Ptr pointer; // STL标准强制要求 typedef Ref reference; // STL标准强制要求 typedef __list_node<T>* link_type; typedef size_t size_type; typedef ptrdiff_t difference_type; // STL标准强制要求 // 这个是迭代器实际管理的资源指针 link_type node; __list_iterator(link_type x) : node(x) {} __list_iterator() {} __list_iterator(const iterator& x) : node(x.node) {} // 在STL算法中需要迭代器提供支持 bool operator==(const self& x) const { return node == x.node; } bool operator!=(const self& x) const { return node != x.node; } // 重载operator *, 返回实际维护的数据 reference operator*() const { return (*node).data; } #ifndef __SGI_STL_NO_ARROW_OPERATOR // 如果支持'->'则重载之 // 解释一下为什么要返回地址 // class A // { // public: // // ... // void fun(); // // ... // } // __list_iterator<A, A&, A*> iter(new A) // iter->fun(); // 这就相当于调用(iter.operator())->fun(); // 经过重载使其行为和原生指针一致 pointer operator->() const { return &(operator*()); } #endif /* __SGI_STL_NO_ARROW_OPERATOR */ // 前缀自加 self& operator++() { node = (link_type)((*node).next); return *this; } // 后缀自加, 需要先产生自身的一个副本, 然会再对自身操作, 最后返回副本 self operator++(int) { self tmp = *this; ++*this; return tmp; } self& operator--() { node = (link_type)((*node).prev); return *this; } self operator--(int) { self tmp = *this; --*this; return tmp; } }; // 如果编译器支持模板类偏特化那么就不需要提供以下traits函数 // 直接使用<stl_iterator.h>中的 // template <class Iterator> // struct iterator_traits #ifndef __STL_CLASS_PARTIAL_SPECIALIZATION template <class T, class Ref, class Ptr> inline bidirectional_iterator_tag iterator_category(const __list_iterator<T, Ref, Ptr>&) { return bidirectional_iterator_tag(); } template <class T, class Ref, class Ptr> inline T* value_type(const __list_iterator<T, Ref, Ptr>&) { return 0; } template <class T, class Ref, class Ptr> inline ptrdiff_t* distance_type(const __list_iterator<T, Ref, Ptr>&) { return 0; } #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ //////////////////////////////////////////////////////////////////////////////// // 链表本身成环, 且是双向链表, 这样计算begin()和end()是常数时间 //////////////////////////////////////////////////////////////////////////////// // end() 头结点 begin() // ↓ ↓ ↓ // -------- -------- -------- -------- // ---->| next |---------->| next |---------->| next |---------->| next |------ // | -------- -------- -------- -------- | // | --| prev |<----------| prev |<----------| prev |<----------| prev |<--| | // | | -------- -------- -------- -------- | | // | | | data | | data | | data | | data | | | // | | -------- -------- -------- -------- | | // | | | | // | | -------- -------- -------- -------- | | // ---|-| next |<----------| next |<----------| next |<----------| next |<--|-- // | -------- -------- -------- -------- | // ->| prev |---------->| prev |---------->| prev |---------->| prev |---- // -------- -------- -------- -------- // | data | | data | | data | | data | // -------- -------- -------- -------- //////////////////////////////////////////////////////////////////////////////// // 默认allocator为alloc, 其具体使用版本请参照<stl_alloc.h> template <class T, class Alloc = alloc> class list { protected: typedef void* void_pointer; typedef __list_node<T> list_node; // 这个提供STL标准的allocator接口 typedef simple_alloc<list_node, Alloc> list_node_allocator; public: typedef T value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef list_node* link_type; typedef size_t size_type; typedef ptrdiff_t difference_type; public: typedef __list_iterator<T, T&, T*> iterator; typedef __list_iterator<T, const T&, const T*> const_iterator; #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION typedef reverse_iterator<const_iterator> const_reverse_iterator; typedef reverse_iterator<iterator> reverse_iterator; #else /* __STL_CLASS_PARTIAL_SPECIALIZATION */ typedef reverse_bidirectional_iterator<const_iterator, value_type, const_reference, difference_type> const_reverse_iterator; typedef reverse_bidirectional_iterator<iterator, value_type, reference, difference_type> reverse_iterator; #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ protected: // 分配一个新结点, 注意这里并不进行构造, // 构造交给全局的construct, 见<stl_stl_uninitialized.h> link_type get_node() { return list_node_allocator::allocate(); } // 释放指定结点, 不进行析构, 析构交给全局的destroy, // 见<stl_stl_uninitialized.h> void put_node(link_type p) { list_node_allocator::deallocate(p); } // 创建结点, 首先分配内存, 然后进行构造 // 注: commit or rollback link_type create_node(const T& x) { link_type p = get_node(); __STL_TRY { construct(&p->data, x); } __STL_UNWIND(put_node(p)); return p; } // 析构结点元素, 并释放内存 void destroy_node(link_type p) { destroy(&p->data); put_node(p); } protected: // 用于空链表的建立 void empty_initialize() { node = get_node(); node->next = node; node->prev = node; } // 创建值为value共n个结点的链表 // 注: commit or rollback void fill_initialize(size_type n, const T& value) { empty_initialize(); __STL_TRY { // 此处插入操作时间复杂度O(1) insert(begin(), n, value); } __STL_UNWIND(clear(); put_node(node)); } // 以一个区间初始化链表 // 注: commit or rollback #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> void range_initialize(InputIterator first, InputIterator last) { empty_initialize(); __STL_TRY { insert(begin(), first, last); } __STL_UNWIND(clear(); put_node(node)); } #else /* __STL_MEMBER_TEMPLATES */ void range_initialize(const T* first, const T* last) { empty_initialize(); __STL_TRY { insert(begin(), first, last); } __STL_UNWIND(clear(); put_node(node)); } void range_initialize(const_iterator first, const_iterator last) { empty_initialize(); __STL_TRY { insert(begin(), first, last); } __STL_UNWIND(clear(); put_node(node)); } #endif /* __STL_MEMBER_TEMPLATES */ protected: // 好吧, 这个是链表头结点, 其本身不保存数据 link_type node; public: list() { empty_initialize(); } iterator begin() { return (link_type)((*node).next); } const_iterator begin() const { return (link_type)((*node).next); } // 链表成环, 当指所以头节点也就是end iterator end() { return node; } const_iterator end() const { return node; } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } // 头结点指向自身说明链表中无元素 bool empty() const { return node->next == node; } // 使用全局函数distance()进行计算, 时间复杂度O(n) size_type size() const { size_type result = 0; distance(begin(), end(), result); return result; } size_type max_size() const { return size_type(-1); } reference front() { return *begin(); } const_reference front() const { return *begin(); } reference back() { return *(--end()); } const_reference back() const { return *(--end()); } void swap(list<T, Alloc>& x) { __STD::swap(node, x.node); } //////////////////////////////////////////////////////////////////////////////// // 在指定位置插入元素 //////////////////////////////////////////////////////////////////////////////// // insert(iterator position, const T& x) // ↓ // create_node(x) // p = get_node();-------->list_node_allocator::allocate(); // construct(&p->data, x); // ↓ // tmp->next = position.node; // tmp->prev = position.node->prev; // (link_type(position.node->prev))->next = tmp; // position.node->prev = tmp; //////////////////////////////////////////////////////////////////////////////// iterator insert(iterator position, const T& x) { link_type tmp = create_node(x); tmp->next = position.node; tmp->prev = position.node->prev; (link_type(position.node->prev))->next = tmp; position.node->prev = tmp; return tmp; } iterator insert(iterator position) { return insert(position, T()); } #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> void insert(iterator position, InputIterator first, InputIterator last); #else /* __STL_MEMBER_TEMPLATES */ void insert(iterator position, const T* first, const T* last); void insert(iterator position, const_iterator first, const_iterator last); #endif /* __STL_MEMBER_TEMPLATES */ // 指定位置插入n个值为x的元素, 详细解析见实现部分 void insert(iterator pos, size_type n, const T& x); void insert(iterator pos, int n, const T& x) { insert(pos, (size_type)n, x); } void insert(iterator pos, long n, const T& x) { insert(pos, (size_type)n, x); } // 在链表前端插入结点 void push_front(const T& x) { insert(begin(), x); } // 在链表最后插入结点 void push_back(const T& x) { insert(end(), x); } // 擦除指定结点 iterator erase(iterator position) { link_type next_node = link_type(position.node->next); link_type prev_node = link_type(position.node->prev); prev_node->next = next_node; next_node->prev = prev_node; destroy_node(position.node); return iterator(next_node); } // 擦除一个区间的结点, 详细解析见实现部分 iterator erase(iterator first, iterator last); void resize(size_type new_size, const T& x); void resize(size_type new_size) { resize(new_size, T()); } void clear(); // 删除链表第一个结点 void pop_front() { erase(begin()); } // 删除链表最后一个结点 void pop_back() { iterator tmp = end(); erase(--tmp); } list(size_type n, const T& value) { fill_initialize(n, value); } list(int n, const T& value) { fill_initialize(n, value); } list(long n, const T& value) { fill_initialize(n, value); } explicit list(size_type n) { fill_initialize(n, T()); } // 以一个区间元素为蓝本创建链表 #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> list(InputIterator first, InputIterator last) { range_initialize(first, last); } #else /* __STL_MEMBER_TEMPLATES */ list(const T* first, const T* last) { range_initialize(first, last); } list(const_iterator first, const_iterator last) { range_initialize(first, last); } #endif /* __STL_MEMBER_TEMPLATES */ // 复制构造 list(const list<T, Alloc>& x) { range_initialize(x.begin(), x.end()); } ~list() { // 释放所有结点 // 使用全局函数distance()进行计算, 时间复杂度O(n) size_type size() const { size_type result = 0; distance(begin(), end(), result); return result; } clear(); // 释放头结点 put_node(node); } list<T, Alloc>& operator=(const list<T, Alloc>& x); protected: //////////////////////////////////////////////////////////////////////////////// // 将[first, last)区间插入到position // 如果last == position, 则相当于链表不变化, 不进行操作 //////////////////////////////////////////////////////////////////////////////// // 初始状态 // first last // ↓ ↓ // -------- -------- -------- -------- -------- -------- // | next |-->| next |-->| next | | next |-->| next |-->| next | // ... -------- -------- -------- ... -------- -------- -------- ... // | prev |<--| prev |<--| prev | | prev |<--| prev |<--| prev | // -------- -------- -------- -------- -------- -------- // // position // ↓ // -------- -------- -------- -------- -------- -------- // | next |-->| next |-->| next |-->| next |-->| next |-->| next | // ... -------- -------- -------- -------- -------- -------- ... // | prev |<--| prev |<--| prev |<--| prev |<--| prev |<--| prev | // -------- -------- -------- -------- -------- -------- // // 操作完成后状态 // first // | // --------------|-------------------------------------- // | ------------|------------------------------------ | last // | | ↓ | | ↓ // -------- | | -------- -------- -------- | | -------- -------- // | next |-- | ----->| next |-->| next | | next |----- | -->| next |-->| next | // ... -------- | | -------- -------- ... -------- | | -------- -------- ... // | prev |<--- | ---| prev |<--| prev | | prev |<-- | -----| prev |<--| prev | // -------- | | -------- -------- -------- | | -------- -------- // | | | | // | ------ | | // ------- | ------------------------------ | // | | | | // | | | ----------------------------- // | | | | // | | | | position // | | | | ↓ // -------- -------- | | | | -------- -------- -------- -------- // | next |-->| next |-- | | -->| next |-->| next |-->| next |-->| next | // ... -------- -------- | | -------- -------- -------- -------- ... // | prev |<--| prev |<--- ------| prev |<--| prev |<--| prev |<--| prev | // -------- -------- -------- -------- -------- -------- //////////////////////////////////////////////////////////////////////////////// void transfer(iterator position, iterator first, iterator last) { if (position != last) { (*(link_type((*last.node).prev))).next = position.node; (*(link_type((*first.node).prev))).next = last.node; (*(link_type((*position.node).prev))).next = first.node; link_type tmp = link_type((*position.node).prev); (*position.node).prev = (*last.node).prev; (*last.node).prev = (*first.node).prev; (*first.node).prev = tmp; } } public: // 将链表x移动到position之前 void splice(iterator position, list& x) { if (!x.empty()) transfer(position, x.begin(), x.end()); } // 将链表中i指向的内容移动到position之前 void splice(iterator position, list&, iterator i) { iterator j = i; ++j; if (position == i || position == j) return; transfer(position, i, j); } // 将[first, last}元素移动到position之前 void splice(iterator position, list&, iterator first, iterator last) { if (first != last) transfer(position, first, last); } void remove(const T& value); void unique(); void merge(list& x); void reverse(); void sort(); #ifdef __STL_MEMBER_TEMPLATES template <class Predicate> void remove_if(Predicate); template <class BinaryPredicate> void unique(BinaryPredicate); template <class StrictWeakOrdering> void merge(list&, StrictWeakOrdering); template <class StrictWeakOrdering> void sort(StrictWeakOrdering); #endif /* __STL_MEMBER_TEMPLATES */ friend bool operator== __STL_NULL_TMPL_ARGS (const list& x, const list& y); }; // 判断两个链表是否相等 template <class T, class Alloc> inline bool operator==(const list<T,Alloc>& x, const list<T,Alloc>& y) { typedef typename list<T,Alloc>::link_type link_type; link_type e1 = x.node; link_type e2 = y.node; link_type n1 = (link_type) e1->next; link_type n2 = (link_type) e2->next; for ( ; n1 != e1 && n2 != e2 ; n1 = (link_type) n1->next, n2 = (link_type) n2->next) if (n1->data != n2->data) return false; return n1 == e1 && n2 == e2; } // 链表比较大小使用的是字典顺序 template <class T, class Alloc> inline bool operator<(const list<T, Alloc>& x, const list<T, Alloc>& y) { return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } // 如果编译器支持模板函数特化优先级 // 那么将全局的swap实现为使用list私有的swap以提高效率 #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template <class T, class Alloc> inline void swap(list<T, Alloc>& x, list<T, Alloc>& y) { x.swap(y); } #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ // 将[first, last)区间插入到position之前 #ifdef __STL_MEMBER_TEMPLATES template <class T, class Alloc> template <class InputIterator> void list<T, Alloc>::insert(iterator position, InputIterator first, InputIterator last) { for ( ; first != last; ++first) insert(position, *first); } #else /* __STL_MEMBER_TEMPLATES */ template <class T, class Alloc> void list<T, Alloc>::insert(iterator position, const T* first, const T* last) { for ( ; first != last; ++first) insert(position, *first); } template <class T, class Alloc> void list<T, Alloc>::insert(iterator position, const_iterator first, const_iterator last) { for ( ; first != last; ++first) insert(position, *first); } #endif /* __STL_MEMBER_TEMPLATES */ // 在position前插入n个值为x的元素 template <class T, class Alloc> void list<T, Alloc>::insert(iterator position, size_type n, const T& x) { for ( ; n > 0; --n) insert(position, x); } // 擦除[first, last)间的结点 template <class T, class Alloc> list<T,Alloc>::iterator list<T, Alloc>::erase(iterator first, iterator last) { while (first != last) erase(first++); return last; } // 重新设置容量大小 // 如果当前容量小于新容量, 则新增加值为x的元素, 使容量增加至新指定大小 // 如果当前容量大于新容量, 则析构出来的元素 template <class T, class Alloc> void list<T, Alloc>::resize(size_type new_size, const T& x) { iterator i = begin(); size_type len = 0; for ( ; i != end() && len < new_size; ++i, ++len) ; if (len == new_size) erase(i, end()); else // i == end() insert(end(), new_size - len, x); } // 销毁所有结点, 将链表置空 template <class T, class Alloc> void list<T, Alloc>::clear() { link_type cur = (link_type) node->next; while (cur != node) { link_type tmp = cur; cur = (link_type) cur->next; destroy_node(tmp); } node->next = node; node->prev = node; } // 链表赋值操作 // 如果当前容器元素少于x容器, 则析构多余元素, // 否则将调用insert插入x中剩余的元素 template <class T, class Alloc> list<T, Alloc>& list<T, Alloc>::operator=(const list<T, Alloc>& x) { if (this != &x) { iterator first1 = begin(); iterator last1 = end(); const_iterator first2 = x.begin(); const_iterator last2 = x.end(); while (first1 != last1 && first2 != last2) *first1++ = *first2++; if (first2 == last2) erase(first1, last1); else insert(last1, first2, last2); } return *this; } // 移除特定值的所有结点 // 时间复杂度O(n) template <class T, class Alloc> void list<T, Alloc>::remove(const T& value) { iterator first = begin(); iterator last = end(); while (first != last) { iterator next = first; ++next; if (*first == value) erase(first); first = next; } } // 移除容器内所有的相邻的重复结点 // 时间复杂度O(n) // 用户自定义数据类型需要提供operator ==()重载 template <class T, class Alloc> void list<T, Alloc>::unique() { iterator first = begin(); iterator last = end(); if (first == last) return; iterator next = first; while (++next != last) { if (*first == *next) erase(next); else first = next; next = first; } } // 假设当前容器和x都已序, 保证两容器合并后仍然有序 template <class T, class Alloc> void list<T, Alloc>::merge(list<T, Alloc>& x) { iterator first1 = begin(); iterator last1 = end(); iterator first2 = x.begin(); iterator last2 = x.end(); while (first1 != last1 && first2 != last2) if (*first2 < *first1) { iterator next = first2; transfer(first1, first2, ++next); first2 = next; } else ++first1; if (first2 != last2) transfer(last1, first2, last2); } // 将链表倒置 // 其算法核心是历遍链表, 每次取出一个结点, 并插入到链表起始点 // 历遍完成后链表满足倒置 template <class T, class Alloc> void list<T, Alloc>::reverse() { if (node->next == node || link_type(node->next)->next == node) return; iterator first = begin(); ++first; while (first != end()) { iterator old = first; ++first; transfer(begin(), old, first); } } // 按照升序排序 template <class T, class Alloc> void list<T, Alloc>::sort() { if (node->next == node || link_type(node->next)->next == node) return; list<T, Alloc> carry; list<T, Alloc> counter[64]; int fill = 0; while (!empty()) { carry.splice(carry.begin(), *this, begin()); int i = 0; while(i < fill && !counter[i].empty()) { counter[i].merge(carry); carry.swap(counter[i++]); } carry.swap(counter[i]); if (i == fill) ++fill; } for (int i = 1; i < fill; ++i) counter[i].merge(counter[i-1]); swap(counter[fill-1]); } #ifdef __STL_MEMBER_TEMPLATES // 给定一个仿函数, 如果仿函数值为真则进行相应元素的移除 template <class T, class Alloc> template <class Predicate> void list<T, Alloc>::remove_if(Predicate pred) { iterator first = begin(); iterator last = end(); while (first != last) { iterator next = first; ++next; if (pred(*first)) erase(first); first = next; } } // 根据仿函数, 决定如何移除相邻的重复结点 template <class T, class Alloc> template <class BinaryPredicate> void list<T, Alloc>::unique(BinaryPredicate binary_pred) { iterator first = begin(); iterator last = end(); if (first == last) return; iterator next = first; while (++next != last) { if (binary_pred(*first, *next)) erase(next); else first = next; next = first; } } // 假设当前容器和x均已序, 将x合并到当前容器中, 并保证在comp仿函数 // 判定下仍然有序 template <class T, class Alloc> template <class StrictWeakOrdering> void list<T, Alloc>::merge(list<T, Alloc>& x, StrictWeakOrdering comp) { iterator first1 = begin(); iterator last1 = end(); iterator first2 = x.begin(); iterator last2 = x.end(); while (first1 != last1 && first2 != last2) if (comp(*first2, *first1)) { iterator next = first2; transfer(first1, first2, ++next); first2 = next; } else ++first1; if (first2 != last2) transfer(last1, first2, last2); } // 根据仿函数comp据定如何排序 template <class T, class Alloc> template <class StrictWeakOrdering> void list<T, Alloc>::sort(StrictWeakOrdering comp) { if (node->next == node || link_type(node->next)->next == node) return; list<T, Alloc> carry; list<T, Alloc> counter[64]; int fill = 0; while (!empty()) { carry.splice(carry.begin(), *this, begin()); int i = 0; while(i < fill && !counter[i].empty()) { counter[i].merge(carry, comp); carry.swap(counter[i++]); } carry.swap(counter[i]); if (i == fill) ++fill; } for (int i = 1; i < fill; ++i) counter[i].merge(counter[i-1], comp); swap(counter[fill-1]); } #endif /* __STL_MEMBER_TEMPLATES */ #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma reset woff 1174 #endif __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_LIST_H */ // Local Variables: // mode:C++ // End:
posted on 2015-11-23 11:23 zyz913614263 阅读(221) 评论(0) 编辑 收藏 举报