决策树

 
  1. 非参数学习方法
  2. 可以解决分类问题
  3. 天然可以解决多分类问题
  4. 也可以解决回归问题
  5. 非常好的可解释性
 

 

复杂度

预测:O(logm)
训练: O(n*m*logm)
剪枝:降低复杂度,解决过拟合

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
 
 

def plot_decision_boundary(model,axis):
    """决策边界"""
    x0, x1 = np.meshgrid(
        np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1),
        np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100)).reshape(-1,1)
#         np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100).reshape(-1,1))
    )
    X_new = np.c_[x0.ravel(),x1.ravel()]
    y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape)
    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    plt.contourf(x0,x1,zz,cmap=custom_cmap)

  

 

熵计算和基尼系数的异同

 
  1. 熵计算比基尼系数稍慢
  2. scikit-learn中默认为基尼系数
  3. 大多数情况二者没有特别的优劣
 

信息熵(随机变量不确定度的度量)

 
  1. 熵越大,数据的不确定性越高
  2. 熵越小,数据的分类越确定
 

def entropy(p):
    """二分类交叉熵"""
    return -p*np.log(p) - (1-p)*np.log(1-p)
 
 
x = np.linspace(0.01,0.99,200)
plt.plot(x,entropy(x))
plt.show()
 
 
 
 
iris = datasets.load_iris()
x = iris.data[:,2:]
y = iris.target
​
plt.scatter(x[y==0,0],x[y==0,1])
plt.scatter(x[y==1,0],x[y==1,1])
plt.scatter(x[y==2,0],x[y==2,1])
plt.show()

  

 
 
 
from sklearn.tree import DecisionTreeClassifier
​
dc = DecisionTreeClassifier(max_depth=2,criterion="entropy")
dc.fit(x,y)
dc.score(x,y)
  
>>>0.96


plot_decision_boundary(dc,axis=[0.5,7.5,0,3])
plt.scatter(x[y==0,0],x[y==0,1])
plt.scatter(x[y==1,0],x[y==1,1])
plt.scatter(x[y==2,0],x[y==2,1])
plt.show()

  

 
 
 

基尼系数

 

def G(p):
    return 2*p-2*p**2

 
x = np.linspace(0.01,0.99,200)
plt.plot(x,G(x))
plt.show()

  

 
 
 
iris = datasets.load_iris()
x = iris.data[:,2:]
y = iris.target
​
plt.scatter(x[y==0,0],x[y==0,1])
plt.scatter(x[y==1,0],x[y==1,1])
plt.scatter(x[y==2,0],x[y==2,1])
plt.show()
 

  

 
iris = datasets.load_iris()
x = iris.data[:,2:]
y = iris.target
​
plt.scatter(x[y==0,0],x[y==0,1])
plt.scatter(x[y==1,0],x[y==1,1])
plt.scatter(x[y==2,0],x[y==2,1])
plt.show()
 

  

 
 
 

模拟使用信息熵划分

from collections import Counter
​
​
def split(X,Y,dim,value):
    indexA = X[:,dim]<=value
    indexB = X[:,dim]>value
    return X[indexA],X[indexB],Y[indexA],Y[indexB]
​
​
def entropy(y):
    counter = Counter(y)
    res = 0.0
    for num in counter.values():
        p = num/len(y)
        res += -p*np.log(p)
    return res
​
​
def try_split(X,Y):
    best_entropy = float("inf")
    best_d,best_v = -1,-1
    for d in range(X.shape[1]):
        sorted_index = np.argsort(X[:,d])
        for i in range(1,len(X)):
            if X[sorted_index[i-1],d] != X[sorted_index[i],d]:
                v = (X[sorted_index[i-1],d]+X[sorted_index[i],d])/2
                x_l,x_r,y_l,y_r = split(X,Y,d,v)
                e = entropy(y_l)+entropy(y_r)
                if e<best_entropy:
                    best_entropy,best_d,best_v = e,d,v
    return best_entropy,best_d,best_v
​
​
if __name__ == "__main__":
    best_entropy,best_d,best_v = try_split(x,y)
    print("best_entropy=",best_entropy)
    print("best_d=",best_d)
    print("best_v=",best_v)
    x1_l,x1_r,y1_l,y1_r = split(x,y,best_d,best_v)
    print(entropy(y1_l))
    print(entropy(y1_r))
    best_entropy2,best_d2,best_v2 = try_split(x1_r,y1_r)
    print("best_entropy=",best_entropy2)
    print("best_d=",best_d2)
    print("best_v=",best_v2)
    x2_l,x2_r,y2_l,y2_r = split(x1_r,y1_r,best_d2,best_v2)
    print(entropy(y2_l))
    print(entropy(y2_r))
 
 
 
>>>best_entropy= 0.6931471805599453
>>>best_d= 0
>>>best_v= 2.45
>>>0.0
>>>0.6931471805599453
>>>best_entropy= 0.4132278899361904
>>>best_d= 1
>>>best_v= 1.75
>>>0.30849545083110386
>>>0.10473243910508653

  

 

模拟使用基尼系数划分

from collections import Counter
​
​
def split(X,Y,dim,value):
    indexA = X[:,dim]<=value
    indexB = X[:,dim]>value
    return X[indexA],X[indexB],Y[indexA],Y[indexB]
​
​
def gini(y):
    counter = Counter(y)
    res = 1.0
    for num in counter.values():
        p = num/len(y)
        res -= p**2
    return res
​
​
def try_split(X,Y):
    best_g = 1e9
    best_d,best_v = -1,-1
    for d in range(X.shape[1]):
        sorted_index = np.argsort(X[:,d])
        for i in range(1,len(X)):
            if X[sorted_index[i-1],d] != X[sorted_index[i],d]:
                v = (X[sorted_index[i-1],d]+X[sorted_index[i],d])/2
                x_l,x_r,y_l,y_r = split(X,Y,d,v)
                g = gini(y_l)+gini(y_r)
                if g<best_g:
                    best_g,best_d,best_v = g,d,v
    return best_g,best_d,best_v
​
​
if __name__ == "__main__":
    best_g,best_d,best_v = try_split(x,y)
    print("best_g=",best_g)
    print("best_d=",best_d)
    print("best_v=",best_v)
    x1_l,x1_r,y1_l,y1_r = split(x,y,best_d,best_v)
    print(gini(y1_l))
    print(gini(y1_r))
    best_g2,best_d2,best_v2 = try_split(x1_r,y1_r)
    print("best_g2=",best_g2)
    print("best_d2=",best_d2)
    print("best_v2=",best_v2)
    x2_l,x2_r,y2_l,y2_r = split(x1_r,y1_r,best_d2,best_v2)
    print(gini(y2_l))
    print(gini(y2_r))
 
 
 
>>>best_g= 0.5
>>>best_d= 0
>>>best_v= 2.45
>>>0.0
>>>0.5
>>>best_g2= 0.2105714900645938
>>>best_d2= 1
>>>best_v2= 1.75
>>>0.1680384087791495
>>>0.04253308128544431

  

 

超参数调优

 

iris = datasets.load_iris()
x = iris.data[:,2:]
y = iris.target
​
from sklearn.tree import DecisionTreeClassifier
​
dc = DecisionTreeClassifier(max_depth=3,criterion="gini")
dc.fit(x,y)
dc.score(x,y)
​
plot_decision_boundary(dc,axis=[0.5,7.5,0,3])
plt.scatter(x[y==0,0],x[y==0,1])
plt.scatter(x[y==1,0],x[y==1,1])
plt.scatter(x[y==2,0],x[y==2,1])
plt.show()
 
dc = DecisionTreeClassifier(min_samples_leaf=5,criterion="gini")
dc.fit(x,y)
dc.score(x,y)
​
plot_decision_boundary(dc,axis=[0.5,7.5,0,3])
plt.scatter(x[y==0,0],x[y==0,1])
plt.scatter(x[y==1,0],x[y==1,1])
plt.scatter(x[y==2,0],x[y==2,1])
plt.show()
 
 

决策树解决回归问题

import numpy as np
import matplotlib.pyplot as plt
​
from sklearn import datasets
from sklearn.model_selection import train_test_split
​
boston = datasets.load_boston()
x = boston.data
y = boston.target
trainX,testX,trainY,testY = train_test_split(x,y)
 
 
 
from sklearn.tree import DecisionTreeRegressor
​
dt_reg = DecisionTreeRegressor(max_depth=3,min_samples_leaf=3)
dt_reg.fit(trainX,trainY)
print("train:",dt_reg.score(trainX, trainY))
print("test:",dt_reg.score(testX,testY))
 
 
 
>>>train: 0.8340090210169837
>>>test: 0.7389146453386009

 

 
def MyDecisionTreeRegressor(trainX,trainY,testX,testY,deep=3,min_samples_leaf=3):
    dt_reg = DecisionTreeRegressor(max_depth=deep,min_samples_leaf=min_samples_leaf)
    dt_reg.fit(trainX,trainY)
    return dt_reg.score(trainX,trainY),dt_reg.score(testX,testY)
 
 
 
 
# 网格搜索
best_score = np.zeros((10,20))
​
for i in range(1,10):
    for j in range(1,20):
        train,test = MyDecisionTreeRegressor(trainX,trainY,testX,testY,deep=i,min_samples_leaf=j)
        best_score[i,j] = test
print(np.max(best_score))
row,column = np.where(best_score==np.max(best_score))
print("row:",row[0])
print("column:",column[0])
 
 
 
>>>0.7707301283273235
>>>row: 4
>>>column: 3

  

 

决策树的局限性

 
  1. 决策边界横平竖直
  2. 对于个别样本点非常敏感
 

 

实际

 

posted @ 2018-07-30 18:05  家迪的家  阅读(337)  评论(0编辑  收藏  举报