神经网络

 

浅层神经网络:

神经网络的输出

 

 

矩阵公式:输出=激活函数(输入x权重+偏差)

 

多层感知器识别手写数字:

关键点:

  1. input:[None,784]
  2. output:[None,10]
  3. 隐藏层:256
  4. 如何随机初始化参数
  5. loss函数如何计算
 

随机初始化

weight:
np.random.randn() or np.random.uniform() # 正态分布打破对称性
bias:
初始化为0是可行的。

 

深层神经网络:

深层神经网络

 

 

为什么深层的网络在很多问题上比浅层的好?

 
  1. 前几层学习低层次简单特征
  2. 后几层结合多个简单特征,探测复杂特征
 

深层的网络隐藏单元数量相对较少,隐藏层数目较多,如果浅层的网络想要达到同样的 计算结果则需要指数级增长的单元数量才能达到。

 

参数VS超参数

 
  1. 学习率
  2. 梯度下降循环数量
  3. 隐藏层数
  4. 隐藏层单元数目
  5. 激活函数选择
 

应用深度学习领域,一个很大程度基于经验的过程,凭经验的过程通俗来说,就是试直到你找到合适的数值。

 

改善深层神经网络:

关于训练集、验证集、测试集的划分。

大数据时代,测试集的主要目的是正确评估分类器的性能,
所以,如果拥有百万数据,我们只需要 1000 条数据,便足以评估单个分类器,并且准确评估该分类器的性能.
98%,1%,1%.

 

验证集和测试集要确保同一分布

 

数据归一化:

机器学习模型使用梯度下降法求最优解时,归一化往往非常有必要,否则很难收敛甚至不能收敛,一般归一化操作有两种:

1.最值归一化

 

2. 均值标准差归一化

 

交叉验证集:

 

正则化:

1. 岭回归和lasso回归

2. dropout

3. 数据扩增

4. early stopping(提早停止训练神经网络)

为什么正则化可以减少过拟合?

直观上理解就是如果正则化设置得足够大,权重矩阵

被设置为接近于 0 的值,直观
理解就是把多隐藏单元的权重设为 0,于是基本上消除了这些隐藏单元的影响。

 

梯度消失、梯度爆炸:

解决:随机初始化神经网络参数。

如何初始化神经网络权重参数?

relu激活函数:

w[i] = np.random.randn(shape)*np.sqrt(2/n[i-1]) # n[i-1]:上一层的输入特征数,w[i]这一层的权重系数

#### np.sqrt(1/n[i-1])

#### np.sqrt(2/(n[i-1]+n[i]))   

梯度调试(只在调试的时候使用):

采用双边误差检验时,我们使用双边误差,(f(θ+x)-f(θ-x))/2x,因为单边误差(f(θ+x)/x)不够准确。

如果不正确,程序可能有bug需要你去解决。。。

 

Adam优化算法:

 

系统地组织超参调试过程的技巧:

学习率α>隐藏层节点数>mini_batch size >隐藏层数>学习次数

 大量阅读别人的案例。

 

自己实现的DNN封装:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split



class MlpClassifier():
    """DNN Classifier 二分类"""
    def __init__(self, hiddenNodes, hiddenDeep=3):
        """隐藏层节点数,隐藏层层数"""
        self.hiddenNodes = hiddenNodes
        self.hiddenDeep = hiddenDeep
  
    def fit(self, trainX, trainY, AdamStep, learnRate=0.1,testX=None,testY=None):
        """trainY must be one-hot"""
        trainX,validationX,trainY,validationY = train_test_split(trainX,trainY,test_size=0.1)
        self.input_ = trainX.shape[1]
        self.output_ = 2
        self.trainX_ = trainX
        self.trainY_ = trainY
        self.AdamStep = AdamStep
        self.learnRate = learnRate
  
        dataInput = tf.placeholder(tf.float32, shape=(None, self.input_))
        labelInput = tf.placeholder(tf.float32, shape=(None, self.output_))
        var = locals()
        for i in range(1, self.hiddenDeep + 1):          
            if self.hiddenDeep == 1:
                """深度为1时特殊"""
                var["w" + str(i)] = tf.Variable(tf.random_uniform((self.input_, 1)) * tf.sqrt(2 / self.input_))
                var["b" + str(i)] = tf.Variable(tf.zeros((1, 1)))
                var["layer" + str(i)] = tf.nn.relu(tf.add(tf.matmul(dataInput, var["w" + str(i)]), var["b" + str(i)]))
                break
  
            if i == 1:
                var["w" + str(i)] = tf.Variable(tf.random_uniform((self.input_, self.hiddenNodes)) * tf.sqrt(2 / self.input_))
                var["b" + str(i)] = tf.Variable(tf.zeros((1, self.hiddenNodes)))
                var["layer" + str(i)] = tf.nn.relu(tf.add(tf.matmul(dataInput, var["w" + str(i)]), var["b" + str(i)]))
            elif i == self.hiddenDeep:
                var["w" + str(i)] = tf.Variable(tf.random_uniform((self.hiddenNodes, 1)) * tf.sqrt(2 / self.hiddenNodes))
                var["b" + str(i)] = tf.Variable(tf.zeros((1, self.output_)))
                var["layer" + str(i)] = tf.nn.relu(tf.add(tf.matmul(var["layer" + str(i - 1)], var["w" + str(i)]), var["b" + str(i)]))
            else:
                var["w" + str(i)] = tf.Variable(
                    tf.random_uniform((self.hiddenNodes, self.hiddenNodes)) * tf.sqrt(2 / self.hiddenNodes))
                var["b" + str(i)] = tf.Variable(tf.zeros((1, self.hiddenNodes)))
                var["layer" + str(i)] = tf.nn.relu(tf.add(tf.matmul(var["layer" + str(i - 1)], var["w" + str(i)]), var["b" + str(i)]))
                  
        result = tf.nn.softmax(var["layer" + str(self.hiddenDeep)],axis=1) # [None,2]
        loss = tf.reduce_sum(-labelInput*tf.log(result)) # 交叉熵损失函数
        train = tf.train.AdamOptimizer(learnRate).minimize(loss)
  
          
        # session
        ratios = []
        validations = []
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            sess.run(tf.local_variables_initializer())
            for i in range(AdamStep):
                sess.run(train,feed_dict={dataInput:trainX,labelInput:trainY})
                trainYHat = sess.run(result,feed_dict={dataInput:trainX})
                ratio = np.sum(np.argmax(trainY,axis=1)==np.argmax(trainYHat,axis=1))/trainY.shape[0]
                ratios.append(ratio)
                  
                validationYHat = sess.run(result,feed_dict={dataInput:validationX})
                validation = np.sum(np.argmax(validationY,axis=1)==np.argmax(validationYHat,axis=1))/validationY.shape[0]
                validations.append(validation)
                  
            # predict
            if testY is not None and testX is not None:
                YHat = sess.run(result, feed_dict={dataInput: testX})
                ratio = np.sum(np.argmax(testY,axis=1)==np.argmax(YHat,axis=1))/testY.shape[0]
                return ratio
              
            elif testY is None and testX is not None:
                YHat = sess.run(result, feed_dict={dataInput: testX})
                return np.argmax(YHat,axis=1)
              
            elif testY is None and testX is None:
              
                x = [i for i in range(1,AdamStep+1)]  
                plt.plot(x,ratios,color="blue",label="train")
                plt.plot(x,validations,color="yellow",label="validation")
                plt.ylim(0,1)
                plt.legend()
                plt.show()
            else:
                print("输入格式错误")
              
    def predict(self,testX,AdamStep):
        YHat = self.fit(self.trainX_,self.trainY_,AdamStep,self.learnRate,testX=testX)
        return YHat
  
    def score(self,testX,testY,AdamStep):
        score = self.fit(self.trainX_,self.trainY_,AdamStep,self.learnRate,testX=testX,testY=testY)
        return score

 
class MlpRegression():
    """DNN Regression"""
   
    def __init__(self, hiddenNodes, hiddenDeep=3):
        """隐藏层节点数,隐藏层层数"""
        self.hiddenNodes = hiddenNodes
        self.hiddenDeep = hiddenDeep
   
    def fit(self, trainX, trainY, AdamStep, learnRate=0.1,testX=None,testY=None):
        """trainY must be one-hot"""
        trainX,validationX,trainY,validationY = train_test_split(trainX,trainY,test_size=0.1)
        self.input_ = trainX.shape[1]
        self.output_ = 1
        self.trainX_ = trainX
        self.trainY_ = trainY
        self.AdamStep = AdamStep
        self.learnRate = learnRate
   
        dataInput = tf.placeholder(tf.float32, shape=(None, self.input_))
        labelInput = tf.placeholder(tf.float32, shape=(None, self.output_))
        var = locals()
        for i in range(1, self.hiddenDeep + 1):         
            if self.hiddenDeep == 1:
                """深度为1时特殊"""
                var["w" + str(i)] = tf.Variable(tf.random_uniform((self.input_, 1)) * tf.sqrt(2 / self.input_))
                var["b" + str(i)] = tf.Variable(tf.zeros((1, 1)))
                var["layer" + str(i)] = tf.nn.relu(tf.add(tf.matmul(dataInput, var["w" + str(i)]), var["b" + str(i)]))
                break
   
            if i == 1:
                var["w" + str(i)] = tf.Variable(tf.random_uniform((self.input_, self.hiddenNodes)) * tf.sqrt(2 / self.input_))
                var["b" + str(i)] = tf.Variable(tf.zeros((1, self.hiddenNodes)))
                var["layer" + str(i)] = tf.nn.relu(tf.add(tf.matmul(dataInput, var["w" + str(i)]), var["b" + str(i)]))
            elif i == self.hiddenDeep:
                var["w" + str(i)] = tf.Variable(tf.random_uniform((self.hiddenNodes, 1)) * tf.sqrt(2 / self.hiddenNodes))
                var["b" + str(i)] = tf.Variable(tf.zeros((1, self.output_)))
                var["layer" + str(i)] = tf.nn.relu(tf.add(tf.matmul(var["layer" + str(i - 1)], var["w" + str(i)]), var["b" + str(i)]))
            else:
                var["w" + str(i)] = tf.Variable(
                    tf.random_uniform((self.hiddenNodes, self.hiddenNodes)) * tf.sqrt(2 / self.hiddenNodes))
                var["b" + str(i)] = tf.Variable(tf.zeros((1, self.hiddenNodes)))
                var["layer" + str(i)] = tf.nn.relu(tf.add(tf.matmul(var["layer" + str(i - 1)], var["w" + str(i)]), var["b" + str(i)]))
                 
        result = var["layer"+str(self.hiddenDeep)]  
        loss = tf.reduce_mean(tf.square(labelInput-result)) # 均方根损失函数       
        train = tf.train.AdamOptimizer(learnRate).minimize(loss)
   
           
        # session
        ratios = []
        validations = []
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            sess.run(tf.local_variables_initializer())
            for i in range(AdamStep):
                sess.run(train,feed_dict={dataInput:trainX,labelInput:trainY})
                trainYHat = sess.run(result,feed_dict={dataInput:trainX})
                ratio = r2_score(trainY,trainYHat)
                ratios.append(ratio)
                   
                validationYHat = sess.run(result,feed_dict={dataInput:validationX})
                validation = r2_score(validationY,validationYHat)
                validations.append(validation)
                   
            # predict
            if testY is not None and testX is not None:
                YHat = sess.run(result, feed_dict={dataInput: testX})
                ratio = r2_score(testY,YHat)
                return ratio
               
            elif testY is None and testX is not None:
                YHat = sess.run(result, feed_dict={dataInput: testX})
                return YHat
               
            elif testY is None and testX is None:
               
                x = [i for i in range(1,AdamStep+1)] 
                plt.plot(x,ratios,color="blue",label="train")
                plt.plot(x,validations,color="yellow",label="validation")
                plt.ylim(0,1)
                plt.legend()
                plt.show()
            else:
                print("输入格式错误")
               
    def predict(self,testX,AdamStep):
        YHat = self.fit(self.trainX_,self.trainY_,AdamStep,self.learnRate,testX=testX)
        return YHat
   
    def score(self,testX,testY,AdamStep):
        score = self.fit(self.trainX_,self.trainY_,AdamStep,self.learnRate,testX=testX,testY=testY)
        return score

  

posted @ 2018-07-26 11:54  家迪的家  阅读(323)  评论(0编辑  收藏  举报