机器学习免费学习路线
https://mp.weixin.qq.com/s/JGXe2CmOdTweHjRJPOgiLg
1. 斯坦福《概率与统计(Probability and Statistics)》
链接:https://online.stanford.edu/courses/gse-yprobstat-probability-and-statistics
2.MIT《线性代数(Linear Algebra)》
链接:https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/
3. 斯坦福 CS231N《用于视觉识别的卷积神经网络(Convolutional Neural Networks for Visual Recognition)》
链接:https://www.youtube.com/playlist?list=PLzUTmXVwsnXod6WNdg57Yc3zFx_f-RYsq
4.fastai《程序员深度学习实战(Practical Deep Learning for Coders)》
链接:https://course.fast.ai/
5. 斯坦福 CS224N《深度学习自然语言处理(Natural Language Processing with Deep Learning)》
链接:https://www.youtube.com/playlist?list=PLU40WL8Ol94IJzQtileLTqGZuXtGlLMP_
链接:https://www.coursera.org/learn/machine-learning
7. 斯坦福《概率图模型专项课程(Probabilistic Graphical Models Specialization)》
链接:https://www.coursera.org/specializations/probabilistic-graphical-models
8. DeepMind《强化学习入门课程(Introduction to Reinforcement Learning)》
链接:https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ
9. Full Stack Deep Learning《全栈深度学习训练营(Full Stack Deep Learning Bootcamp)
链接:https://fullstackdeeplearning.com/march2019
10. Coursera《如何赢得数据科学竞赛:向顶尖 Kaggler 学习(How to Win a Data Science Competition: Learn from Top Kagglers)》
链接:https://www.coursera.org/learn/competitive-data-science