Opencv+C++之人脸识别二

这两天课比较多,上次的两步法人脸识别代码一直没有补充完整,今天将整个实验代码show一下,同时将该方法的主要思想介绍下:

上一节我们已经将图片进行降维处理,这样做的目的就是要在保持对象间差异的同时降低处理数据量。除了PCA外,LDA也是一种比较简单实用的降维方法,大家可以对比两种降维方法;基于PCA降维后的数据,我们接着要做的是用训练数据将测试数据表示出来

接着通过以下的误差判别式来找到M近邻(误差值越小说明该训练样本跟测试样本的相似度越大)

       

以上就完成了两步法中的第一步,第二步中用M近邻样本将测试样本再次标出(实际上这里的本质还是稀疏表示的方法,但是改进之处是单纯的稀疏法中稀疏项不确定,两步法中通过第一步的误差筛选确定了贡献度较大的训练样本)

在M近邻中包含多个类的训练样本,我们要将每个类的训练样本累加起来,分别同测试样本做误差对比,将测试样本判定给误差最下的类

       

OK,主要思想介绍了,下面就看代码实现

/************************************************************************/
/* ZhaoChaofeng
*/ 2013.4.16
/************************************************************************/

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

#include <fstream>
#include <sstream>
#include <iostream>
#include <string>

using namespace cv;
using namespace std;

const double u=0.01f;
const double v=0.01f;//the global parameter
const int MNeighbor=40;//the M nearest neighbors
// Number of components to keep for the PCA
const int num_components = 100;
//the M neighbor mats
vector<Mat> MneighborMat;
//the class index of M neighbor mats
vector<int> MneighborIndex;
//the number of object which used to training
const int Training_ObjectNum=40;
//the number of image that each object used
const int Training_ImageNum=7;
//the number of object used to testing
const int Test_ObjectNum=40;
//the image number
const int Test_ImageNum=3;

// Normalizes a given image into a value range between 0 and 255.
Mat norm_0_255(const Mat& src) {
    // Create and return normalized image:
    Mat dst;
    switch(src.channels()) {
    case 1:
        cv::normalize(src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
        break;
    case 3:
        cv::normalize(src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
        break;
    default:
        src.copyTo(dst);
        break;
    }
    return dst;
}

// Converts the images given in src into a row matrix.
Mat asRowMatrix(const vector<Mat>& src, int rtype, double alpha = 1, double beta = 0) {
    // Number of samples:
    size_t n = src.size();
    // Return empty matrix if no matrices given:
    if(n == 0)
        return Mat();
    // dimensionality of (reshaped) samples
    size_t d = src[0].total();
    // Create resulting data matrix:
    Mat data(n, d, rtype);
    // Now copy data:
    for(int i = 0; i < n; i++) {
        //
        if(src[i].empty()) {
            string error_message = format("Image number %d was empty, please check your input data.", i);
            CV_Error(CV_StsBadArg, error_message);
        }
        // Make sure data can be reshaped, throw a meaningful exception if not!
        if(src[i].total() != d) {
            string error_message = format("Wrong number of elements in matrix #%d! Expected %d was %d.", i, d, src[i].total());
            CV_Error(CV_StsBadArg, error_message);
        }
        // Get a hold of the current row:
        Mat xi = data.row(i);
        // Make reshape happy by cloning for non-continuous matrices:
        if(src[i].isContinuous()) {
            src[i].reshape(1, 1).convertTo(xi, rtype, alpha, beta);
        } else {
            src[i].clone().reshape(1, 1).convertTo(xi, rtype, alpha, beta);
        }
    }
    return data;
}

//convert int to string
string Int_String(int index)
{
    stringstream ss;
    ss<<index;
    return ss.str();
}

////show the element of mat(used to test code)
//void showMat(Mat RainMat)
//{
//    for (int i=0;i<RainMat.rows;i++)
//    {
//        for (int j=0;j<RainMat.cols;j++)
//        {
//            cout<<RainMat.at<float>(i,j)<<"  ";
//        }
//        cout<<endl;
//    }
//}
//
////show the element of vector
//void showVector(vector<int> index)
//{
//    for (int i=0;i<index.size();i++)
//    {
//        cout<<index[i]<<endl;
//    }
//}
//
//void showMatVector(vector<Mat> neighbor)
//{
//    for (int e=0;e<neighbor.size();e++)
//    {
//        showMat(neighbor[e]);
//    }
//}


//Training function


void Trainging()
{
    // Holds some training images:
    vector<Mat> db;

    // This is the path to where I stored the images, yours is different!
    for (int i=1;i<=Training_ObjectNum;i++)
    {
        for (int j=1;j<=Training_ImageNum;j++)
        {
            string filename="s"+Int_String(i)+"/"+Int_String(j)+".pgm";
            db.push_back(imread(filename,IMREAD_GRAYSCALE));
        }
    }

    // Build a matrix with the observations in row:
    Mat data = asRowMatrix(db, CV_32FC1);

    // Perform a PCA:
    PCA pca(data, Mat(), CV_PCA_DATA_AS_ROW, num_components);

    // And copy the PCA results:
    Mat mean = pca.mean.clone();
    Mat eigenvalues = pca.eigenvalues.clone();
    Mat eigenvectors = pca.eigenvectors.clone();

    // The mean face:
    //imshow("avg", norm_0_255(mean.reshape(1, db[0].rows)));

    // The first three eigenfaces:
    //imshow("pc1", norm_0_255(pca.eigenvectors.row(0)).reshape(1, db[0].rows));
    //imshow("pc2", norm_0_255(pca.eigenvectors.row(1)).reshape(1, db[0].rows));
    //imshow("pc3", norm_0_255(pca.eigenvectors.row(2)).reshape(1, db[0].rows));

    ////get and save the training image information which decreased on dimensionality
    Mat mat_trans_eigen;
    Mat temp_data=data.clone();
    Mat temp_eigenvector=pca.eigenvectors.clone();
    gemm(temp_data,temp_eigenvector,1,NULL,0,mat_trans_eigen,CV_GEMM_B_T);

    //save the eigenvectors
    FileStorage fs(".\\eigenvector.xml", FileStorage::WRITE);
    fs<<"eigenvector"<<eigenvectors;
    fs<<"TrainingSamples"<<mat_trans_eigen;
    fs.release();
}

//Line combination of test sample used by training samples 
//parameter:y stand for the test sample column vector;
//x stand for the training samples matrix
Mat LineCombination(Mat y,Mat x)
{
    //the number of training samples
    size_t col=x.cols;
    //the result mat 
    Mat result=cvCreateMat(col,1,CV_32FC1);
    //the transposition of x and also work as a temp matrix
    Mat trans_x_mat=cvCreateMat(col,col,CV_32FC1);
    //construct the identity matrix
    Mat I=Mat::ones(col,col,CV_32FC1);

    //solve the Y=XA
    //result=x.inv(DECOMP_SVD);
        //result*=y;
    Mat temp=(x.t()*x+u*I);
    
    Mat temp_one=temp.inv(DECOMP_SVD);
    Mat temp_two=x.t()*y;
    result=temp_one*temp_two;

    return result;
}

//Error test
//parameter:y stand for the test sample column vector;
//x stand for the training samples matrix
//coeff stand for the coefficient of training samples 
void  ErrorTest(Mat y,Mat x,Mat coeff)
{
    //the array store the coefficient
    map<double,int> Efficient;

    //compute the error
    for (int i=0;i<x.cols;i++)
    {
        Mat temp=x.col(i);
        double coefficient=coeff.at<float>(i,0);
        temp=coefficient*temp;
        double e=norm((y-temp),NORM_L2);
        Efficient[e]=i;//insert a new element
    }

    //select the minimum w col as the w nearest neighbors
    map<double,int>::const_iterator map_it=Efficient.begin();
    int num=0;
    //the map could sorted by the key one
    while (map_it!=Efficient.end() && num<MNeighbor)
    {
        MneighborMat.push_back(x.col(map_it->second));
        MneighborIndex.push_back(map_it->second);
        ++map_it;
        ++num;
    }

    //return MneighborMat;
}

//error test of two step
//parameter:MneighborMat store the class information of M nearest neighbor samples
int ErrorTest_Two(Mat y,Mat x,Mat coeff)
{
    int result;
    bool flag=true;
    double minimumerror;
    //
    map<int,vector<Mat>> ErrorResult;

    //count the class of M neighbor
    for (int i=0;i<x.cols;i++)
    {
        //compare
        //Mat temp=x.col(i)==MneighborMat[i];
          //showMat(temp);
        //if (temp.at<float>(0,0)==255)
        //{
            int classinf=MneighborIndex[i];
            double coefficient=coeff.at<float>(i,0);
            Mat temp=x.col(i);
            temp=coefficient*temp;
            ErrorResult[classinf/Training_ImageNum].push_back(temp);
        //}
        
    }

    //
    map<int,vector<Mat>>::const_iterator map_it=ErrorResult.begin();
    while(map_it!=ErrorResult.end())
    {
        vector<Mat> temp_mat=map_it->second;
        int num=temp_mat.size();
        Mat temp_one;
        temp_one=Mat::zeros(temp_mat[0].rows,temp_mat[0].cols,CV_32FC1);
        while (num>0)
        {
            temp_one+=temp_mat[num-1];
            num--;
        }
        double e=norm((y-temp_one),NORM_L2);
        if (flag)
        {
            minimumerror=e;
            result=map_it->first+1;
            flag=false;
        }
        if (e<minimumerror)
        {
            minimumerror=e;
            result=map_it->first+1;
        }
        ++map_it;
    }
    return result;
}

//testing function
//parameter:y stand for the test sample column vector;
//x stand for the training samples matrix
int testing(Mat x,Mat y)
{
    // the class that test sample belongs to
    int classNum;

    //the first step: get the M nearest neighbors
    Mat coffecient=LineCombination(y.t(),x.t());

    //cout<<"the first step coffecient"<<endl;
    //showMat(coffecient);

    //map<Mat,int> MneighborMat=ErrorTest(y,x,coffecient);
    ErrorTest(y.t(),x.t(),coffecient);

    //cout<<"the M neighbor index"<<endl;
    //showVector(MneighborIndex);
    //cout<<"the M neighbor mats"<<endl;
    //showMatVector(MneighborMat);

    //the second step:
    //construct the W nearest neighbors mat
    int row=x.cols;//should be careful 
    Mat temp(row,MNeighbor,CV_32FC1);
    for (int i=0;i<MneighborMat.size();i++)
    {
        Mat temp_x=temp.col(i);
        if (MneighborMat[i].isContinuous())
        {
            MneighborMat[i].convertTo(temp_x,CV_32FC1,1,0);
        }
        else
        {
            MneighborMat[i].clone().convertTo(temp_x,CV_32FC1,1,0);
        }
    }

    //cout<<"the second step mat"<<endl;
    //showMat(temp);

    Mat coffecient_two=LineCombination(y.t(),temp);

    //cout<<"the second step coffecient"<<endl;
    //showMat(coffecient_two);

    classNum=ErrorTest_Two(y.t(),temp,coffecient_two);
    return classNum;
}

int main(int argc, const char *argv[]) {
    //the number which test true
    int TrueNum=0;
    //the Total sample which be tested
    int TotalNum=Test_ObjectNum*Test_ImageNum;

    //if there is the eigenvector.xml, it means we have got the training data and go to the testing stage directly;
    FileStorage fs(".\\eigenvector.xml", FileStorage::READ);
    if (fs.isOpened())
    {
        //if the eigenvector.xml file exist,read the mat data
        Mat mat_eigenvector;
        fs["eigenvector"] >> mat_eigenvector;    
        Mat mat_Training;
        fs["TrainingSamples"]>>mat_Training;

        for (int i=1;i<=Test_ObjectNum;i++)
        {
            int ClassTestNum=0;
            for (int j=Training_ImageNum+1;j<=Training_ImageNum+Test_ImageNum;j++)
            {
                string filename="s"+Int_String(i)+"/"+Int_String(j)+".pgm";
                Mat TestSample=imread(filename,IMREAD_GRAYSCALE);
                Mat TestSample_Row;
                TestSample.reshape(1,1).convertTo(TestSample_Row,CV_32FC1,1,0);//convert to row mat
                Mat De_deminsion_test;
                gemm(TestSample_Row,mat_eigenvector,1,NULL,0,De_deminsion_test,CV_GEMM_B_T);// get the test sample which decrease the dimensionality

                //cout<<"the test sample"<<endl;
                //showMat(De_deminsion_test.t());
                //cout<<"the training samples"<<endl;
                //showMat(mat_Training);

                int result=testing(mat_Training,De_deminsion_test);
                //cout<<"the result is"<<result<<endl;
                if (result==i)
                {
                    TrueNum++;
                    ClassTestNum++;
                }
                MneighborIndex.clear();
                MneighborMat.clear();//及时清除空间
            }
            cout<<""<<Int_String(i)<<"类测试正确的图片数:  "<<Int_String(ClassTestNum)<<endl;
        }
        fs.release();
    }
    else
    {
        Trainging();
    }
    // Show the images:
    waitKey(0);

    // Success!
    return 0;
}

在以上的实现中,有些opencv的实现需要特别注意一下:

(1)坑爹的Mat类型,它虽然可以方便的让我们实现图像数据的矩阵化,并给出了一系列的操作方法,但是,在调试中,它却不能像一般变量一样,让我们直观的看到;我用一个比较笨的方法:自己写一个方法,在调试中调用,呈现关键矩阵的数据

(2)另外一个就是将训练数据做一个保存,用到了opencv中的FileStorage类;有关对中间数据的存储通常会用到.xml或者.yml文件,以下对其做个简单介绍

  新版本的OpenCV的C++接口中,imwrite()和imread()只能保存整数数据,且需要以图像格式。当需要保存浮点数据或者XML/YML文件时,之前的C语言接口cvSave()函数已经在C++接口中被删除,代替它的是    FileStorage类。这个类非常的方便,封装了很多数据结构的细节,编程的时候可以根据统一的接口对数据结构进行保存。

    1. FileStorage类写XML/YML文件

         •   新建一个FileStorage对象,以FileStorage::WRITE的方式打开一个文件。

         •   使用 << 操作对该文件进行操作。

         •   释放该对象,对文件进行关闭。

        例子如下:

FileStorage fs("test.yml", FileStorage::WRITE);
    fs << "frameCount" << 5;
    time_t rawtime; time(&rawtime);
    fs << "calibrationDate" << asctime(localtime(&rawtime));
    Mat cameraMatrix = (Mat_<double>(3,3) << 1000, 0, 320, 0, 1000, 240, 0, 0, 1); //又一种Mat初始化方式
    Mat distCoeffs = (Mat_<double>(5,1) << 0.1, 0.01, -0.001, 0, 0);
    fs << "cameraMatrix" << cameraMatrix << "distCoeffs" << distCoeffs;
    
    //features为一个大小为3的向量,其中每个元素由随机数x,y和大小为8的uchar数组组成
    fs << "features" << "[";
    for( int i = 0; i < 3; i++ )
    {
        int x = rand() % 640;
        int y = rand() % 480;
        uchar lbp = rand() % 256;
        fs << "{:" << "x" << x << "y" << y << "lbp" << "[:";
        for( int j = 0; j < 8; j++ )
            fs << ((lbp >> j) & 1);
        fs << "]" << "}";
    }
    fs << "]";
    fs.release();

2. FileStorage类读XML/YML文件

       FileStorage对存储内容在内存中是以层次的节点组成的,每个节点类型为FileNode,FileNode可以使单个的数值、数组或者一系列FileNode的集合。FileNode又可以看做是一个容器,使用iterator接口可以对该节点内更小单位的内容进行访问,例如访问到上面存储的文件中"features"的内容。步骤与写文件类似:

         •   新建FileStorage对象,以FileStorage::READ 方式打开一个已经存在的文件

         •   使用FileStorage::operator []()函数对文件进行读取,或者使用FileNode和FileNodeIterator

         •   使用FileStorage::release()对文件进行关闭

         例子如下:

FileStorage fs("test.yml", FileStorage::READ);

    //方式一: []操作符
    int frameCount = (int)fs["frameCount"];
    
    //方式二: FileNode::operator >>()
    string date;
    fs["calibrationDate"] >> date;
    
    Mat cameraMatrix2, distCoeffs2;
    fs["cameraMatrix"] >> cameraMatrix2;
    fs["distCoeffs"] >> distCoeffs2;
    
    //注意FileNodeIterator的使用,似乎只能用一维数组去读取里面所有的数据
    FileNode features = fs["features"];
    FileNodeIterator it = features.begin(), it_end = features.end();
    int idx = 0;
    std::vector<uchar> lbpval;
    for( ; it != it_end; ++it, idx++ )
    {
        cout << "feature #" << idx << ": ";
        cout << "x=" << (int)(*it)["x"] << ", y=" << (int)(*it)["y"] << ", lbp: (";
        (*it)["lbp"] >> lbpval;  //直接读出一维向量

        for( int i = 0; i < (int)lbpval.size(); i++ )
            cout << " " << (int)lbpval[i];
        cout << ")" << endl;
    }
    fs.release();

另外,注意在新建FileStorage对象之后,并以READ或WRITE模式打开文件之后,可以用FileStorage::isOpened()查看文件状态,判断是否成功打开了文件。

有关FileStorage类的相关内容引用自:http://www.cnblogs.com/summerRQ/articles/2524560.html

我使用的是opencv2.4.0版本实现的方法,opencv有个欠缺的地方就是版本间的兼容性,虽然做了些工作,但是使用起来还是有些不流畅。不过,值得称赞的是其将OOP的思想应用到库的开发中,很多核心对象和相关操作被封装起来,方便使用。

posted on 2013-04-17 19:44  翠竹林  阅读(9397)  评论(8编辑  收藏  举报

导航