Art Gallery
题目链接:http://poj.org/problem?id=1279
题意:给出一个n个点的多边形,求多边形核的面积;
思路:先用半平面交求出多边形核的边,再求出多边形核的交点,再用差积求面积即可,如果半平面交的边少于3条,那情况不存在,输出0。
#include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<cmath> using namespace std; const int maxn = 1e6; const double EPS = 1e-9; struct point//点 { double x,y; point friend operator -(point A,point B) { return {A.x-B.x,A.y-B.y}; } }; struct line//线 { point x,y; }; point p[maxn],q[maxn]; line L[maxn],que[maxn]; double chaj(point A,point B)//差积 { return A.x*B.y-A.y*B.x; } bool fanx(int N)//判断是否为逆序 { double sum=0; for(int i=2;i<N;i++) sum+=chaj(p[i]-p[1],p[i+1]-p[1]); return sum<0;//正序 } double getAngle(point A)//获得极角角度 { return atan2(A.y,A.x); } bool cmp(line A,line B)//根据极角排序,极角相同,左边的排到前面 { double sum1=getAngle(A.y-A.x); double sum2=getAngle(B.y-B.x); if (fabs(sum1 - sum2) < EPS) return chaj(A.y-A.x,B.y-A.x)<=0; return sum1<sum2; } point getIntersectPoint(line A, line B)//得到两条线的交点 { double a1 = A.x.y - A.y.y, b1 = A.y.x - A.x.x, c1 = A.x.x * A.y.y - A.y.x * A.x.y; double a2 = B.x.y - B.y.y, b2 = B.y.x - B.x.x, c2 = B.x.x * B.y.y - B.y.x * B.x.y; point PO; PO.x= (c1*b2-c2*b1)/(a2*b1-a1*b2); PO.y= (a2*c1-a1*c2)/(a1*b2-a2*b1); return PO; } bool onRight(line A, line B, line C)//判断 b,c 的交点是否在 a 的右边 { point o = getIntersectPoint(B, C); if( chaj( A.y - A.x ,o - A.x )<0 ) return true; return false; } double area(int len)//凸包求面积 { if(len<3) return 0; double sum=0; for(int i=3;i<=len;i++) sum+=chaj( q[i-1]-q[1] , q[i]-q[1] ); return fabs(sum/2); } void HalfPlaneIntersection(int N) { sort(L+1,L+N+1,cmp); int cnt=1;//去重后的个数 for(int i=2;i<=N;i++) { if (fabs(getAngle(L[i].y-L[i].x) - getAngle(L[i-1].y-L[i-1].x)) < EPS) continue; L[++cnt]=L[i]; } int head=0,tail=0; for(int i=1;i<=cnt;i++) { //判断新加入直线产生的影响 while(tail-head>1 && onRight(L[i], que[tail - 1], que[tail - 2])) tail--; while(tail-head>1 && onRight(L[i], que[head], que[head + 1])) head++; que[tail++]=L[i]; } //最后判断最先加入的直线和最后的直线的影响 while(tail-head>1 && onRight(que[head], que[tail-1], que[tail-2])) tail--; while(tail-head>1 && onRight(que[tail-1], que[head], que[head+1])) head++; //半平面交存在que中, head到tail-1 if(tail-head<3) { cout<<"0.00"<<endl; return ; } int len=0; for(int i=head+1;i<tail;i++) q[++len]=getIntersectPoint(que[i],que[i-1]); q[++len]=getIntersectPoint(que[head],que[tail-1]); printf("%.2lf\n",area(len)+EPS); } int main() { int T; cin>>T; while(T--) { int N; cin>>N; for(int i=1;i<=N;i++) cin>>p[i].x>>p[i].y; if(fanx(N))//是正序,反正建线 { for(int i=2;i<=N;i++) { L[i-1].x=p[i]; L[i-1].y=p[i-1]; } L[N].x=p[1]; L[N].y=p[N]; } else { for(int i=1;i<N;i++) { L[i].x=p[i]; L[i].y=p[i+1]; } L[N].x=p[N]; L[N].y=p[1]; } HalfPlaneIntersection(N); } }