洛谷P1062 数列
题目描述
给定一个正整数k(3≤k≤15),把所有k的方幂及所有有限个互不相等的k的方幂之和构成一个递增的序列,例如,当k=3时,这个序列是:
1,3,4,9,10,12,13,…
(该序列实际上就是:3^0,3^1,3^0+3^1,3^2,3^0+3^2,3^1+3^2,3^0+3^1+3^2,…)
请你求出这个序列的第N项的值(用10进制数表示)。
例如,对于k=3,N=100,正确答案应该是981。
输入输出格式
输入格式:
输入文件只有1行,为2个正整数,用一个空格隔开:
k N (k、N的含义与上述的问题描述一致,且3≤k≤15,10≤N≤1000)。
输出格式:
输出文件为计算结果,是一个正整数(在所有的测试数据中,结果均不超过2.1*109)。(整数前不要有空格和其他符号)。
输入输出样例
输入样例#1:
3 100
输出样例#1:
981
说明
NOIP 2006 普及组 第四题
分析:这个数列是非常有规律的:1,10,11,100,101,110,111,也就是把N转化为2进制后的排列,然后搞一搞就好了.
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <queue> #include <stack> #include <cstdio> #include <iostream> #include <cstring> #include <algorithm> #include <string> #include <cmath> using namespace std; long long k, n,sum = 0,t = 1; int main() { scanf("%lld%lld", &k, &n); while (n) { if (n & 1) sum += t; n /= 2; t *= k; } printf("%lld\n", sum); return 0; }