第二讲 从图像到点云 笔记

本讲中,我们将带领读者,编写一个将3D图像转换为3D点云的程序。该程序是后期处理地图的基础。最简单的点云地图即是把不同位置的点云进行拼接得到的。

当我们使用RGB-D相机时,会从相机里读到两种数据:彩色图像和深度图像。

由于没有相机,我们采用的深度图和RGB图。我们要把这两个图转成点云啦,因为计算每个像素的空间点位置,可是后面配准、拼图等一系列事情的基础呢。比如,在配准时,必须知道特征点的3D位置呢,这时候就要用到我们这里讲到的知识啦!

-----------------------------------------------------------------------------------------------------------------------------------------------------

从2D到3D(数学部分)

针孔相机模型

如果相机发生了位移和旋转,那么只要对这些点进行位移和旋转操作即可。

 

-----------------------------------------------------------------------------------------------------------------------------------------------------

从2D到3D(编程部分)

下面,我们来实现一个程序,完成从图像到点云的转换。请在上一节讲到的 代码根目录/src/ 文件夹中新建一个generatePointCloud.cpp文件:

// C++ 标准库
#include <iostream>
#include <string>
using namespace std;

// OpenCV 库
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

// PCL 库
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>

// 定义点云类型
typedef pcl::PointXYZRGBA PointT;
typedef pcl::PointCloud<PointT> PointCloud; 

// 相机内参
const double camera_factor = 1000;
const double camera_cx = 325.5;
const double camera_cy = 253.5;
const double camera_fx = 518.0;
const double camera_fy = 519.0;

// 主函数 
int main( int argc, char** argv )
{
    // 读取./data/rgb.png和./data/depth.png,并转化为点云

    // 图像矩阵
    cv::Mat rgb, depth;
    // 使用cv::imread()来读取图像
    // API: http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#cv2.imread
    rgb = cv::imread( "./data/rgb.png" );
    // rgb 图像是8UC3的彩色图像
    // depth 是16UC1的单通道图像,注意flags设置-1,表示读取原始数据不做任何修改
    depth = cv::imread( "./data/depth.png", -1 );

    // 点云变量
    // 使用智能指针,创建一个空点云。这种指针用完会自动释放。
    PointCloud::Ptr cloud ( new PointCloud );
    // 遍历深度图
    for (int m = 0; m < depth.rows; m++)
        for (int n=0; n < depth.cols; n++)
        {
            // 获取深度图中(m,n)处的值
            ushort d = depth.ptr<ushort>(m)[n];
            // d 可能没有值,若如此,跳过此点
            if (d == 0)
                continue;
            // d 存在值,则向点云增加一个点
            PointT p;

            // 计算这个点的空间坐标
            p.z = double(d) / camera_factor;
            p.x = (n - camera_cx) * p.z / camera_fx;
            p.y = (m - camera_cy) * p.z / camera_fy;
            
            // 从rgb图像中获取它的颜色
            // rgb是三通道的BGR格式图,所以按下面的顺序获取颜色
            p.b = rgb.ptr<uchar>(m)[n*3];
            p.g = rgb.ptr<uchar>(m)[n*3+1];
            p.r = rgb.ptr<uchar>(m)[n*3+2];

            // 把p加入到点云中
            cloud->points.push_back( p );
        }
    // 设置并保存点云
    cloud->height = 1;
    cloud->width = cloud->points.size();
    cout<<"point cloud size = "<<cloud->points.size()<<endl;
    cloud->is_dense = false;
    pcl::io::savePCDFile( "./pointcloud.pcd", *cloud );
    // 清除数据并退出
    cloud->points.clear();
    cout<<"Point cloud saved."<<endl;
    return 0;
}

 

     程序运行需要数据。请把上面的那两个图存放在 代码根目录/data 下(没有这个文件夹就新建一个)。

  我们使用OpenCV的imread函数读取图片。在OpenCV2里,图像是矩阵(cv::Mat)作为基本的数据结构。Mat结构既可以帮你管理内存、像素信息,还支持一些常见的矩阵运算,是非常方便的结构。彩色图像含有R,G,B三个通道,每个通道占8个bit(也就是unsigned char),故称为8UC3(8位unsigend char, 3通道)结构。而深度图则是单通道的图像,每个像素由16个bit组成(也就是C++里的unsigned short),像素的值代表该点离传感器的距离。通常1000的值代表1米,所以我们把camera_factor设置成1000. 这样,深度图里每个像素点的读数除以1000,就是它离你的真实距离了。

  接下来,我们按照“先列后行”的顺序,遍历了整张深度图。在这个双重循环中:

1 for (int m = 0; m < depth.rows; m++)
2      for (int n=0; n < depth.cols; n++)

  m指图像的行,n是图像的列。它和空间点的坐标系关系是这样的:

  深度图第m行,第n行的数据可以使用depth.ptr<ushort>(m) [n]来获取。其中,cv::Mat的ptr函数会返回指向该图像第m行数据的头指针。然后加上位移n后,这个指针指向的数据就是我们需要读取的数据啦。

  计算三维点坐标的公式我们已经给出过了,代码里原封不动地实现了一遍。我们根据这个公式,新增了一个空间点,并放入了点云中。最后,把整个点云存储为 ./data/pointcloud.pcd 文件。



编译并运行

    最后,我们在src/CMakeLists.txt里加入几行代码,告诉编译器我们希望编译这个程序。请在此文件中加入以下几行:

 

  

# 增加PCL库的依赖
FIND_PACKAGE( PCL REQUIRED COMPONENTS common io )

# 增加opencv的依赖
FIND_PACKAGE( OpenCV REQUIRED )

# 添加头文件和库文件
ADD_DEFINITIONS( ${PCL_DEFINITIONS} )
INCLUDE_DIRECTORIES( ${PCL_INCLUDE_DIRS}  )
LINK_LIBRARIES( ${PCL_LIBRARY_DIRS} )

ADD_EXECUTABLE( generate_pointcloud generatePointCloud.cpp )
TARGET_LINK_LIBRARIES( generate_pointcloud ${OpenCV_LIBS} 
    ${PCL_LIBRARIES} )
View Code

 

2.编译并运行

1 cd build
2 cmake ..     #..代表代码根目录 /home/louis/slam
3 make
4 cd ..


如果编译通过,就可在bin目录下找到新写的二进制:generate_pointcloud 运行它:
bin/generate_pointcloud

即可在data目录下生成点云文件。现在,你肯定希望查看一下新生成的点云了。如果已经安装了pcl,就可以通过:
1 cd ../data
2 pcl_viewer pointcloud.pcd

太开心了!!终于有结果了!

posted @ 2018-04-19 17:24  月夜_1  阅读(4584)  评论(0编辑  收藏  举报