Keras如何在学习过程中降低学习率

 

 

波动是正常现象,而且你这个算法跑得还可以(可以看出train和val差的很少),你可以尝试学习率递减,因为你看到了后期train基本上没怎么动,而对val影响还不小,因此后期可以让学习率降低(反正acc上升空间也不大),然后多跑一会就行

 

Keras学习率调整

1. LearningRateScheduler

keras.callbacks.LearningRateScheduler(schedule)

  

该回调函数是学习率调度器.

参数

  • schedule:函数,该函数以epoch号为参数(从0算起的整数),返回一个新学习率(浮点数)

代码

import keras.backend as K
from keras.callbacks import LearningRateScheduler
 
def scheduler(epoch):
    # 每隔100个epoch,学习率减小为原来的1/10
    if epoch % 100 == 0 and epoch != 0:
        lr = K.get_value(model.optimizer.lr)
        K.set_value(model.optimizer.lr, lr * 0.1)
        print("lr changed to {}".format(lr * 0.1))
    return K.get_value(model.optimizer.lr)
 
reduce_lr = LearningRateScheduler(scheduler)

  

 

 

https://blog.csdn.net/zzc15806/article/details/79711114

 

随着学习的进行,深度学习的学习速率逐步下降 为什么比 固定的学习速率 得到的结果更加准确?

 

 

如上图所示,曲线代表损失值,小球一开始位于(1)处,假设学习速率设置为 △ v,那么根据梯度下降,损失值将在(1) (2)之间来回移动,无法到达最小值(3)处。要想到达(3),只能降低学习速率。

2. ReduceLROnPlateau

learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001)
#并且作为callbacks进入generator,开始训练
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
                              epochs = epochs, validation_data = (X_val,Y_val),
                              verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size
                              , callbacks=[learning_rate_reduction])

  文档:

ReduceLROnPlateau
keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0)

  

当评价指标不在提升时,减少学习率。当学习停滞时,减少2倍或10倍的学习率常常能获得较好的效果。该回调函数检测指标的情况,如果在patience个epoch中看不到模型性能提升,则减少学习率

参数
monitor:被监测的量
factor:每次减少学习率的因子,学习率将以lr = lr*factor的形式被减少
patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发
mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值触发学习率减少。在max模式下,当检测值不再上升则触发学习率减少。
epsilon:阈值,用来确定是否进入检测值的“平原区”
cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作
min_lr:学习率的下限

转载:https://www.cnblogs.com/jsxyhelu/p/9251101.html

 

posted @ 2021-06-02 21:06  月夜_1  阅读(532)  评论(0编辑  收藏  举报