[LeetCode每日1题][困难] 460. LFU缓存

 

 

 

题目

460. LFU缓存 - 力扣(LeetCode)
在这里插入图片描述

哈希表 + 平衡二叉树 - O(logN)

一个平衡二叉树用于对结点的频率时间从大到小排序,这里时间用一个变量time维护即可,每次使用时++time。一个哈希表用于查找结点。


struct Node {
    int cnt, time, key, value;

    Node(int _cnt, int _time, int _key, int _value):cnt(_cnt), time(_time), key(_key), value(_value){}
    
    bool operator < (const Node& rhs) const {
        return cnt == rhs.cnt ? time < rhs.time : cnt < rhs.cnt;
    }
};
class LFUCache {
    // 缓存容量,时间戳
    int capacity, time;
    unordered_map<int, Node> key_table;
    set<Node> S;
public:
    LFUCache(int _capacity) {
        capacity = _capacity;
        time = 0;
        key_table.clear();
        S.clear();
    }
    
    int get(int key) {
        if (capacity == 0) return -1;
        auto it = key_table.find(key);
        // 如果哈希表中没有键 key,返回 -1
        if (it == key_table.end()) return -1;
        // 从哈希表中得到旧的缓存
        Node cache = it -> second;
        // 从平衡二叉树中删除旧的缓存
        S.erase(cache);
        // 将旧缓存更新
        cache.cnt += 1;
        cache.time = ++time;
        // 将新缓存重新放入哈希表和平衡二叉树中
        S.insert(cache);
        it -> second = cache;
        return cache.value;
    }
    
    void put(int key, int value) {
        if (capacity == 0) return;
        auto it = key_table.find(key);
        if (it == key_table.end()) {
            // 如果到达缓存容量上限
            if (key_table.size() == capacity) {
                // 从哈希表和平衡二叉树中删除最近最少使用的缓存
                key_table.erase(S.begin() -> key);
                S.erase(S.begin());
            }
            // 创建新的缓存
            Node cache = Node(1, ++time, key, value);
            // 将新缓存放入哈希表和平衡二叉树中
            key_table.insert(make_pair(key, cache));
            S.insert(cache);
        }
        else {
            // 这里和 get() 函数类似
            Node cache = it -> second;
            S.erase(cache);
            cache.cnt += 1;
            cache.time = ++time;
            cache.value = value;
            S.insert(cache);
            it -> second = cache;
        }
    }
};

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/lfu-cache/solution/lfuhuan-cun-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

双哈希表 - O(1)

简单地说就是,一个map<int,list<Node>::iterator>,用来存key对应的Node的地址,一个map<int,list<Node>>,用来存某一frequency对应的所有Node的链表。插入的时候,根据frequency,将结点插入到对应链表的头部,显然越靠头部的结点,越被最近使用。移除的时候,移除最小frequancy对应结点的尾部即可。还有一些小细节需要处理,如更新minfreq和移除空链表。还是直接看官方的吧……
在这里插入图片描述

// 缓存的节点信息
struct Node {
    int key, val, freq;
    Node(int _key,int _val,int _freq): key(_key), val(_val), freq(_freq){}
};
class LFUCache {
    int minfreq, capacity;
    unordered_map<int, list<Node>::iterator> key_table;
    unordered_map<int, list<Node>> freq_table;
public:
    LFUCache(int _capacity) {
        minfreq = 0;
        capacity = _capacity;
        key_table.clear();
        freq_table.clear();
    }
    
    int get(int key) {
        if (capacity == 0) return -1;
        auto it = key_table.find(key);
        if (it == key_table.end()) return -1;
        list<Node>::iterator node = it -> second;
        int val = node -> val, freq = node -> freq;
        freq_table[freq].erase(node);
        // 如果当前链表为空,我们需要在哈希表中删除,且更新minFreq
        if (freq_table[freq].size() == 0) {
            freq_table.erase(freq);
            if (minfreq == freq) minfreq += 1;
        }
        // 插入到 freq + 1 中
        freq_table[freq + 1].push_front(Node(key, val, freq + 1));
        key_table[key] = freq_table[freq + 1].begin();
        return val;
    }
    
    void put(int key, int value) {
        if (capacity == 0) return;
        auto it = key_table.find(key);
        if (it == key_table.end()) {
            // 缓存已满,需要进行删除操作
            if (key_table.size() == capacity) {
                // 通过 minFreq 拿到 freq_table[minFreq] 链表的末尾节点
                auto it2 = freq_table[minfreq].back();
                key_table.erase(it2.key);
                freq_table[minfreq].pop_back();
                if (freq_table[minfreq].size() == 0) {
                    freq_table.erase(minfreq);
                }
            } 
            freq_table[1].push_front(Node(key, value, 1));
            key_table[key] = freq_table[1].begin();
            minfreq = 1;
        } else {
            // 与 get 操作基本一致,除了需要更新缓存的值
            list<Node>::iterator node = it -> second;
            int freq = node -> freq;
            freq_table[freq].erase(node);
            if (freq_table[freq].size() == 0) {
                freq_table.erase(freq);
                if (minfreq == freq) minfreq += 1;
            }
            freq_table[freq + 1].push_front(Node(key, value, freq + 1));
            key_table[key] = freq_table[freq + 1].begin();
        }
    }
};

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/lfu-cache/solution/lfuhuan-cun-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

参考

LFU缓存 - LFU缓存 - 力扣(LeetCode)

posted @ 2020-04-05 16:36  zaqny  阅读(205)  评论(0编辑  收藏  举报