9.最短路径

实验9 最短路径

实验目的

  • 掌握图的存储结构
  • 掌握迪杰斯特拉和弗洛伊德算法寻求最短路径算法及实现

实验内容

  • 从文件中读入有向图(网)并以邻接矩阵存储
  • 利用杰斯特拉算法寻求最短路径(弗洛伊德算法及实现自学完成)

代码

tu.txt (教程P171 图6.22)

6 8
a b c d e f
a f 100
a c 10
a e 30
b c 5
c d 50
e d 20
e f 60
d f 10

dijkstra.cpp

#include <iostream>
#include <fstream>
using namespace std;

#define ERROR 0
#define MaxInt 32767	 //表示极大值,即∞
#define MVNum 10		 //最大顶点数
typedef char VerTexType; //假设顶点的数据类型为字符型
typedef int ArcType;	 //假设边的权值类型为整型

int *D = new int[MVNum];	 //用于记录最短路的长度
bool *S = new bool[MVNum]{}; //标记顶点是否进入S集合
int *Path = new int[MVNum];	 //用于记录最短路顶点的前驱

//------------图的邻接矩阵-----------------
struct AMGraph
{
	VerTexType vexs[MVNum];		//顶点表
	ArcType arcs[MVNum][MVNum]; //邻接矩阵
	int vexnum, arcnum;			//图的当前点数和边数
};

int LocateVex(AMGraph &G, VerTexType v)
{
	//确定点v在G中的位置
	for (int i = 0; i < G.vexnum; ++i)
		if (G.vexs[i] == v)
			return i;
	return -1;
} //LocateVex

// 采用邻接矩阵表示法,创建无向网G
void CreateUDN(AMGraph &G)
{
	int i, j, k;
	fstream file;

	file.open("tu.txt"); //数据文件要按教材  P171 图 6.22 自行编辑产生
	if (!file)
	{
		cout << "没有找到图文件!" << endl;
		exit(ERROR);
	}
	file >> G.vexnum >> G.arcnum; //输入总顶点数,总边数

	for (i = 0; i < G.vexnum; ++i)
		file >> G.vexs[i];

	// 初始化邻接矩阵,边的权值均置为极大值MaxInt
	for (i = 0; i < G.vexnum; ++i)
		for (j = 0; j < G.vexnum; ++j)
			G.arcs[i][j] = MaxInt;

	// 构造邻接矩阵
	for (k = 0; k < G.arcnum; ++k)
	{
		VerTexType v1, v2;
		ArcType w;
		file >> v1 >> v2 >> w;
		i = LocateVex(G, v1);
		j = LocateVex(G, v2); //确定v1和v2在G中的位置,即顶点数组的下标
		G.arcs[i][j] = w;
	}
	file.close();
}

// 用Dijkstra算法求有向网G的v0顶点到其余顶点的最短路径
void ShortestPath_DIJ(AMGraph &G, int start)
{
	for (int i = 0; i < G.vexnum; ++i)
	{
		D[i] = G.arcs[start][i]; //将v0到各个终点的最短路径长度初始化为弧上的权值
		if (D[i] != MaxInt)
			Path[i] = start; //如果v0和v之间有弧,则将v的前驱置为v0
		else
			Path[i] = -1; //如果v0和v之间无弧,则将v的前驱置为-1
	}

	S[start] = true; //将v0加入S
	D[start] = 0;	 //源点到源点的距离为0

	/*―初始化结束,开始主循环,每次求得v0到某个顶点v的最短路径,将v加到S集―*/
	for (int i = 0; i < G.vexnum; ++i)
	{ //对其余n-1个顶点,依次进行计算
		int min = MaxInt;
		int min_index = -1;
		for (int w = 0; w < G.vexnum; ++w)
		{
			if (!S[w] && D[w] < min)
			{ //选择一条当前的最短路径,终点为v
				min_index = w;
				min = D[w];
			}
		}

		S[min_index] = true;			   //将v加入S
		for (int k = 0; k < G.vexnum; ++k) //更新从v0出发到集合V?S上所有顶点的最短路径长度
		{
			if (!S[k] && (D[k] + G.arcs[min_index][k]))
			{
				D[k] = D[min_index] + G.arcs[min_index][k]; //更新D[w]
				Path[k] = min_index;						//更改w的前驱为v
			}												//if
		}
	} //for
} //ShortestPath_DIJ

// 显示最短路径
void DisplayPath(AMGraph &G, int begin, int temp)
{
	if (Path[temp] != -1)
	{
		DisplayPath(G, begin, Path[temp]);
		cout << G.vexs[Path[temp]] << "-->";
	}
}

// 显示图的邻接矩阵
void DisplayGraph(AMGraph &G)
{
	for (int i = 0; i < G.vexnum; i++)
	{
		for (int j = 0; j < G.vexnum; j++)
			if (G.arcs[i][j] != MaxInt)
				cout << G.arcs[i][j] << '\t';
			else
				cout << "∞" << '\t';
		cout << endl;
	}
}

int main()
{
	cout << "************算法6.10 迪杰斯特拉算法**************" << endl;
	AMGraph G;
	int i, j, num_start, num_destination;
	VerTexType start, destination;

	cout << "**从文件中读入有向网 G 数据**" << endl;
	CreateUDN(G);
	cout << "*****有向网G创建完成!*****" << endl;
	DisplayGraph(G);
	cout << "请依次输入起始点、终点名称:";
	cin >> start >> destination;
	num_start = LocateVex(G, start);
	num_destination = LocateVex(G, destination);
	ShortestPath_DIJ(G, num_start);
	cout << "最短路径为:";
	DisplayPath(G, num_start, num_destination);
	cout << G.vexs[num_destination] << endl;
}

截图

其它

dijkstra.py (Python版)

from math import inf as M

nodes = ['v0', 'v1', 'v2', 'v3', 'v4']

nodes_num = len(nodes)

graph = [
    [0, 10, M, M, 5],
    [M, 0, 1, M, 2],
    [M, M, 0, 4, M],
    [7, M, 6, 0, M],
    [M, 3, 9, 2, 0]
]

# 初始化
visited = [False] * nodes_num
distance = [M] * nodes_num
path = [-1] * nodes_num

start = 2
visited[start] = True

for i in range(nodes_num):
    distance[i] = graph[start][i]
    if i != start and distance[i] != M:  # start的邻接结点的path为start
        path[i] = start

# 迪杰斯特拉
while not all(visited):  # 如果没有全部访问完成
    # 选择一个没有访问过且路径最短的结点
    choice_vex = -1
    tmp_dist = M
    for i in range(nodes_num):
        if visited[i]:  # 访问过的不管
            continue
        if distance[i] < tmp_dist:  # 记录距离更小结点的下标
            tmp_dist = distance[i]
            choice_vex = i
    # 得到了没有访问过且路径最短的结点, 开始处理它
    visited[choice_vex] = True

    # 更新与其相邻的未访问过的结点的distance
    for adjvex in range(nodes_num):
        # 访问过的结点, 不相邻的结点不管
        if visited[adjvex]:
            continue
        if graph[choice_vex][adjvex] == M:
            continue

        new_dist = distance[choice_vex] + graph[choice_vex][adjvex]
        if new_dist < distance[adjvex]:  # 如果距离更短,更新邻接点的信息
            distance[adjvex] = new_dist
            path[adjvex] = choice_vex

# 输出路径
for i in range(nodes_num):
    if i == start:
        continue

    print(f"{nodes[start]} -> {nodes[i]} 最短距离: {distance[i]}, 路线: ", end='')
    stack = []
    stack.append(i)
    parent_vex = path[i]
    while parent_vex != -1:
        stack.append(parent_vex)
        parent_vex = path[parent_vex]

    route = [nodes[i] for i in reversed(stack)]
    print(' -> '.join(route))

floyd.py (弗洛伊德算法)

from math import inf as M

nodes = ['v0', 'v1', 'v2', 'v3', 'v4']
nodes_num = len(nodes)

A = [
    [0, M, 1, M, 10],
    [M, 0, M, 1, 5],
    [M, 1, 0, M, 7],
    [M, M, M, 0, 1],
    [M, M, M, M, 0]
]

path = [[-1] * nodes_num for i in range(nodes_num)]

# Floyd
for k in range(nodes_num):  # k 为中转结点
    # 遍历整个矩阵, i 为行号, j为列号
    for i in range(nodes_num):
        for j in range(nodes_num):
            dist = A[i][k] + A[k][j]
            if dist < A[i][j]:
                A[i][j] = dist
                path[i][j] = k

result = []


def get_path(start, end):
    k = path[start][end]
    if k == -1:
        if start not in result:
            result.append(start)
        if end not in result:
            result.append(end)
    else:
        get_path(start, k)
        get_path(k, end)


get_path(2, 4)
print(" -> ".join(nodes[i] for i in result))

posted @ 2020-12-01 16:37  zaxtyson  阅读(182)  评论(0编辑  收藏  举报